Prediction
sundai-club/alolan_vulpix_flux:c87f3f18ba2909071edc1cfe8012f0df04b05177a1ef0db05572ca52576faaf4Input
- model
- dev
- prompt
- Alolan VULPIX pulling a snow sled to deliver presents to Elsa's castle!
- go_fast
- lora_scale
- 1
- megapixels
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3
- output_quality
- 80
- prompt_strength
- 0.8
- extra_lora_scale
- 1
- num_inference_steps
- 28
{
"model": "dev",
"prompt": "Alolan VULPIX pulling a snow sled to deliver presents to Elsa's castle!",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run sundai-club/alolan_vulpix_flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"sundai-club/alolan_vulpix_flux:c87f3f18ba2909071edc1cfe8012f0df04b05177a1ef0db05572ca52576faaf4",
{
input: {
model: "dev",
prompt: "Alolan VULPIX pulling a snow sled to deliver presents to Elsa's castle!",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run sundai-club/alolan_vulpix_flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"sundai-club/alolan_vulpix_flux:c87f3f18ba2909071edc1cfe8012f0df04b05177a1ef0db05572ca52576faaf4",
input={
"model": "dev",
"prompt": "Alolan VULPIX pulling a snow sled to deliver presents to Elsa's castle!",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run sundai-club/alolan_vulpix_flux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "sundai-club/alolan_vulpix_flux:c87f3f18ba2909071edc1cfe8012f0df04b05177a1ef0db05572ca52576faaf4",
"input": {
"model": "dev",
"prompt": "Alolan VULPIX pulling a snow sled to deliver presents to Elsa\'s castle!",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/sundai-club/alolan_vulpix_flux@sha256:c87f3f18ba2909071edc1cfe8012f0df04b05177a1ef0db05572ca52576faaf4 \
-i 'model="dev"' \
-i $'prompt="Alolan VULPIX pulling a snow sled to deliver presents to Elsa\'s castle!"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/sundai-club/alolan_vulpix_flux@sha256:c87f3f18ba2909071edc1cfe8012f0df04b05177a1ef0db05572ca52576faaf4
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "Alolan VULPIX pulling a snow sled to deliver presents to Elsa\'s castle!", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{
"completed_at": "2025-01-20T20:50:01.850749Z",
"created_at": "2025-01-20T20:49:53.440000Z",
"data_removed": false,
"error": null,
"id": "h2dqngwz41rme0cmgnxawbc0xr",
"input": {
"model": "dev",
"prompt": "Alolan VULPIX pulling a snow sled to deliver presents to Elsa's castle!",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
},
"logs": "2025-01-20 20:49:53.700 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-20 20:49:53.700 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2804.75it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2729.34it/s]\n2025-01-20 20:49:53.812 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s\nfree=29878800396288\nDownloading weights\n2025-01-20T20:49:53Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpfdhiihyh/weights url=https://replicate.delivery/xezq/ib77EhCvApL5CRmZgaPS8iZR3DuT2UZgJxDRpPSrb8ZufiDKA/trained_model.tar\n2025-01-20T20:49:55Z | INFO | [ Complete ] dest=/tmp/tmpfdhiihyh/weights size=\"172 MB\" total_elapsed=1.797s url=https://replicate.delivery/xezq/ib77EhCvApL5CRmZgaPS8iZR3DuT2UZgJxDRpPSrb8ZufiDKA/trained_model.tar\nDownloaded weights in 1.82s\n2025-01-20 20:49:55.636 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/f5a1b7cbc556f6f1\n2025-01-20 20:49:55.706 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded\n2025-01-20 20:49:55.706 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys\n2025-01-20 20:49:55.707 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted\nApplying LoRA: 0%| | 0/304 [00:00<?, ?it/s]\nApplying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2809.63it/s]\nApplying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2734.23it/s]\n2025-01-20 20:49:55.818 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s\nUsing seed: 50611\n0it [00:00, ?it/s]\n1it [00:00, 8.43it/s]\n2it [00:00, 5.91it/s]\n3it [00:00, 5.39it/s]\n4it [00:00, 5.18it/s]\n5it [00:00, 5.06it/s]\n6it [00:01, 4.99it/s]\n7it [00:01, 4.95it/s]\n8it [00:01, 4.93it/s]\n9it [00:01, 4.91it/s]\n10it [00:01, 4.90it/s]\n11it [00:02, 4.89it/s]\n12it [00:02, 4.87it/s]\n13it [00:02, 4.87it/s]\n14it [00:02, 4.87it/s]\n15it [00:02, 4.87it/s]\n16it [00:03, 4.87it/s]\n17it [00:03, 4.87it/s]\n18it [00:03, 4.86it/s]\n19it [00:03, 4.86it/s]\n20it [00:04, 4.86it/s]\n21it [00:04, 4.86it/s]\n22it [00:04, 4.86it/s]\n23it [00:04, 4.86it/s]\n24it [00:04, 4.86it/s]\n25it [00:05, 4.87it/s]\n26it [00:05, 4.86it/s]\n27it [00:05, 4.86it/s]\n28it [00:05, 4.86it/s]\n28it [00:05, 4.94it/s]\nTotal safe images: 1 out of 1",
"metrics": {
"predict_time": 8.149572686,
"total_time": 8.410749
},
"output": [
"https://replicate.delivery/xezq/4aUNHy3Ae9XcAC3xVIb7ZfvJXMLGU7uEfRR7eeAi17fe8RjDKA/out-0.webp"
],
"started_at": "2025-01-20T20:49:53.701176Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-prdei7bi43u3e6udklryhdwpbyz3pjgj3ugryvw5xvqmltj5qrxa",
"get": "https://api.replicate.com/v1/predictions/h2dqngwz41rme0cmgnxawbc0xr",
"cancel": "https://api.replicate.com/v1/predictions/h2dqngwz41rme0cmgnxawbc0xr/cancel"
},
"version": "c87f3f18ba2909071edc1cfe8012f0df04b05177a1ef0db05572ca52576faaf4"
}
2025-01-20 20:49:53.700 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-20 20:49:53.700 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2804.75it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2729.34it/s]
2025-01-20 20:49:53.812 | SUCCESS | fp8.lora_loading:unload_loras:564 - LoRAs unloaded in 0.11s
free=29878800396288
Downloading weights
2025-01-20T20:49:53Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpfdhiihyh/weights url=https://replicate.delivery/xezq/ib77EhCvApL5CRmZgaPS8iZR3DuT2UZgJxDRpPSrb8ZufiDKA/trained_model.tar
2025-01-20T20:49:55Z | INFO | [ Complete ] dest=/tmp/tmpfdhiihyh/weights size="172 MB" total_elapsed=1.797s url=https://replicate.delivery/xezq/ib77EhCvApL5CRmZgaPS8iZR3DuT2UZgJxDRpPSrb8ZufiDKA/trained_model.tar
Downloaded weights in 1.82s
2025-01-20 20:49:55.636 | INFO | fp8.lora_loading:convert_lora_weights:498 - Loading LoRA weights for /src/weights-cache/f5a1b7cbc556f6f1
2025-01-20 20:49:55.706 | INFO | fp8.lora_loading:convert_lora_weights:519 - LoRA weights loaded
2025-01-20 20:49:55.706 | DEBUG | fp8.lora_loading:apply_lora_to_model:574 - Extracting keys
2025-01-20 20:49:55.707 | DEBUG | fp8.lora_loading:apply_lora_to_model:581 - Keys extracted
Applying LoRA: 0%| | 0/304 [00:00<?, ?it/s]
Applying LoRA: 92%|█████████▏| 281/304 [00:00<00:00, 2809.63it/s]
Applying LoRA: 100%|██████████| 304/304 [00:00<00:00, 2734.23it/s]
2025-01-20 20:49:55.818 | SUCCESS | fp8.lora_loading:load_lora:539 - LoRA applied in 0.18s
Using seed: 50611
0it [00:00, ?it/s]
1it [00:00, 8.43it/s]
2it [00:00, 5.91it/s]
3it [00:00, 5.39it/s]
4it [00:00, 5.18it/s]
5it [00:00, 5.06it/s]
6it [00:01, 4.99it/s]
7it [00:01, 4.95it/s]
8it [00:01, 4.93it/s]
9it [00:01, 4.91it/s]
10it [00:01, 4.90it/s]
11it [00:02, 4.89it/s]
12it [00:02, 4.87it/s]
13it [00:02, 4.87it/s]
14it [00:02, 4.87it/s]
15it [00:02, 4.87it/s]
16it [00:03, 4.87it/s]
17it [00:03, 4.87it/s]
18it [00:03, 4.86it/s]
19it [00:03, 4.86it/s]
20it [00:04, 4.86it/s]
21it [00:04, 4.86it/s]
22it [00:04, 4.86it/s]
23it [00:04, 4.86it/s]
24it [00:04, 4.86it/s]
25it [00:05, 4.87it/s]
26it [00:05, 4.86it/s]
27it [00:05, 4.86it/s]
28it [00:05, 4.86it/s]
28it [00:05, 4.94it/s]
Total safe images: 1 out of 1