Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
pielgrin /sdxl-omaji:493e4043
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208",
{
input: {
width: 512,
height: 512,
prompt: "A TOK emoji of Zinedine Zidane",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.7,
num_outputs: 3,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 100
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208",
input={
"width": 512,
"height": 512,
"prompt": "A TOK emoji of Zinedine Zidane",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.7,
"num_outputs": 3,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208",
"input": {
"width": 512,
"height": 512,
"prompt": "A TOK emoji of Zinedine Zidane",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.7,
"num_outputs": 3,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-11T17:03:44.110915Z",
"created_at": "2023-09-11T17:03:23.325258Z",
"data_removed": false,
"error": null,
"id": "tvktkj3bq24tyx4mnm7bokfkii",
"input": {
"width": 512,
"height": 512,
"prompt": "A TOK emoji of Zinedine Zidane",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.7,
"num_outputs": 3,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 100
},
"logs": "Using seed: 49875\nPrompt: A <s0><s1> emoji of Zinedine Zidane\ntxt2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:00<00:15, 5.01it/s]\n 2%|▎ | 2/80 [00:00<00:15, 4.99it/s]\n 4%|▍ | 3/80 [00:00<00:15, 4.98it/s]\n 5%|▌ | 4/80 [00:00<00:15, 4.98it/s]\n 6%|▋ | 5/80 [00:01<00:15, 4.99it/s]\n 8%|▊ | 6/80 [00:01<00:14, 5.00it/s]\n 9%|▉ | 7/80 [00:01<00:14, 5.00it/s]\n 10%|█ | 8/80 [00:01<00:14, 5.00it/s]\n 11%|█▏ | 9/80 [00:01<00:14, 5.00it/s]\n 12%|█▎ | 10/80 [00:02<00:14, 5.00it/s]\n 14%|█▍ | 11/80 [00:02<00:13, 5.00it/s]\n 15%|█▌ | 12/80 [00:02<00:13, 5.00it/s]\n 16%|█▋ | 13/80 [00:02<00:13, 5.00it/s]\n 18%|█▊ | 14/80 [00:02<00:13, 5.00it/s]\n 19%|█▉ | 15/80 [00:03<00:13, 5.00it/s]\n 20%|██ | 16/80 [00:03<00:12, 5.00it/s]\n 21%|██▏ | 17/80 [00:03<00:12, 5.00it/s]\n 22%|██▎ | 18/80 [00:03<00:12, 5.00it/s]\n 24%|██▍ | 19/80 [00:03<00:12, 5.00it/s]\n 25%|██▌ | 20/80 [00:04<00:12, 5.00it/s]\n 26%|██▋ | 21/80 [00:04<00:11, 4.99it/s]\n 28%|██▊ | 22/80 [00:04<00:11, 4.99it/s]\n 29%|██▉ | 23/80 [00:04<00:11, 5.00it/s]\n 30%|███ | 24/80 [00:04<00:11, 4.99it/s]\n 31%|███▏ | 25/80 [00:05<00:11, 4.99it/s]\n 32%|███▎ | 26/80 [00:05<00:10, 4.99it/s]\n 34%|███▍ | 27/80 [00:05<00:10, 4.99it/s]\n 35%|███▌ | 28/80 [00:05<00:10, 4.99it/s]\n 36%|███▋ | 29/80 [00:05<00:10, 4.99it/s]\n 38%|███▊ | 30/80 [00:06<00:10, 4.98it/s]\n 39%|███▉ | 31/80 [00:06<00:09, 4.99it/s]\n 40%|████ | 32/80 [00:06<00:09, 4.99it/s]\n 41%|████▏ | 33/80 [00:06<00:09, 4.99it/s]\n 42%|████▎ | 34/80 [00:06<00:09, 4.99it/s]\n 44%|████▍ | 35/80 [00:07<00:09, 4.99it/s]\n 45%|████▌ | 36/80 [00:07<00:08, 4.99it/s]\n 46%|████▋ | 37/80 [00:07<00:08, 4.99it/s]\n 48%|████▊ | 38/80 [00:07<00:08, 4.98it/s]\n 49%|████▉ | 39/80 [00:07<00:08, 4.99it/s]\n 50%|█████ | 40/80 [00:08<00:08, 4.98it/s]\n 51%|█████▏ | 41/80 [00:08<00:07, 4.99it/s]\n 52%|█████▎ | 42/80 [00:08<00:07, 4.98it/s]\n 54%|█████▍ | 43/80 [00:08<00:07, 4.98it/s]\n 55%|█████▌ | 44/80 [00:08<00:07, 4.98it/s]\n 56%|█████▋ | 45/80 [00:09<00:07, 4.98it/s]\n 57%|█████▊ | 46/80 [00:09<00:06, 4.98it/s]\n 59%|█████▉ | 47/80 [00:09<00:06, 4.98it/s]\n 60%|██████ | 48/80 [00:09<00:06, 4.97it/s]\n 61%|██████▏ | 49/80 [00:09<00:06, 4.97it/s]\n 62%|██████▎ | 50/80 [00:10<00:06, 4.97it/s]\n 64%|██████▍ | 51/80 [00:10<00:05, 4.97it/s]\n 65%|██████▌ | 52/80 [00:10<00:05, 4.97it/s]\n 66%|██████▋ | 53/80 [00:10<00:05, 4.97it/s]\n 68%|██████▊ | 54/80 [00:10<00:05, 4.98it/s]\n 69%|██████▉ | 55/80 [00:11<00:05, 4.98it/s]\n 70%|███████ | 56/80 [00:11<00:04, 4.98it/s]\n 71%|███████▏ | 57/80 [00:11<00:04, 4.98it/s]\n 72%|███████▎ | 58/80 [00:11<00:04, 4.98it/s]\n 74%|███████▍ | 59/80 [00:11<00:04, 4.97it/s]\n 75%|███████▌ | 60/80 [00:12<00:04, 4.97it/s]\n 76%|███████▋ | 61/80 [00:12<00:03, 4.97it/s]\n 78%|███████▊ | 62/80 [00:12<00:03, 4.97it/s]\n 79%|███████▉ | 63/80 [00:12<00:03, 4.96it/s]\n 80%|████████ | 64/80 [00:12<00:03, 4.97it/s]\n 81%|████████▏ | 65/80 [00:13<00:03, 4.97it/s]\n 82%|████████▎ | 66/80 [00:13<00:02, 4.97it/s]\n 84%|████████▍ | 67/80 [00:13<00:02, 4.97it/s]\n 85%|████████▌ | 68/80 [00:13<00:02, 4.97it/s]\n 86%|████████▋ | 69/80 [00:13<00:02, 4.97it/s]\n 88%|████████▊ | 70/80 [00:14<00:02, 4.97it/s]\n 89%|████████▉ | 71/80 [00:14<00:01, 4.97it/s]\n 90%|█████████ | 72/80 [00:14<00:01, 4.97it/s]\n 91%|█████████▏| 73/80 [00:14<00:01, 4.97it/s]\n 92%|█████████▎| 74/80 [00:14<00:01, 4.97it/s]\n 94%|█████████▍| 75/80 [00:15<00:01, 4.97it/s]\n 95%|█████████▌| 76/80 [00:15<00:00, 4.96it/s]\n 96%|█████████▋| 77/80 [00:15<00:00, 4.96it/s]\n 98%|█████████▊| 78/80 [00:15<00:00, 4.96it/s]\n 99%|█████████▉| 79/80 [00:15<00:00, 4.96it/s]\n100%|██████████| 80/80 [00:16<00:00, 4.96it/s]\n100%|██████████| 80/80 [00:16<00:00, 4.98it/s]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:02, 6.67it/s]\n 10%|█ | 2/20 [00:00<00:02, 6.60it/s]\n 15%|█▌ | 3/20 [00:00<00:02, 6.58it/s]\n 20%|██ | 4/20 [00:00<00:02, 6.57it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 6.56it/s]\n 30%|███ | 6/20 [00:00<00:02, 6.53it/s]\n 35%|███▌ | 7/20 [00:01<00:01, 6.53it/s]\n 40%|████ | 8/20 [00:01<00:01, 6.53it/s]\n 45%|████▌ | 9/20 [00:01<00:01, 6.54it/s]\n 50%|█████ | 10/20 [00:01<00:01, 6.54it/s]\n 55%|█████▌ | 11/20 [00:01<00:01, 6.55it/s]\n 60%|██████ | 12/20 [00:01<00:01, 6.55it/s]\n 65%|██████▌ | 13/20 [00:01<00:01, 6.54it/s]\n 70%|███████ | 14/20 [00:02<00:00, 6.54it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 6.55it/s]\n 80%|████████ | 16/20 [00:02<00:00, 6.55it/s]\n 85%|████████▌ | 17/20 [00:02<00:00, 6.54it/s]\n 90%|█████████ | 18/20 [00:02<00:00, 6.53it/s]\n 95%|█████████▌| 19/20 [00:02<00:00, 6.53it/s]\n100%|██████████| 20/20 [00:03<00:00, 6.53it/s]\n100%|██████████| 20/20 [00:03<00:00, 6.54it/s]",
"metrics": {
"predict_time": 20.837011,
"total_time": 20.785657
},
"output": [
"https://replicate.delivery/pbxt/a5DYu1I5kWriNFY5X4jDebLHIAeEJy3iWfD0UiHFywe9meZMC/out-0.png",
"https://replicate.delivery/pbxt/oO7h3hubWBrfQSdyJBy7SaKOEt2sXFzIRheMQPTVCRfemeZMC/out-1.png",
"https://replicate.delivery/pbxt/qneRdac5JkU2DyQNwqxLsSA9leecxCol2TQVgfZZDDY8meZMC/out-2.png"
],
"started_at": "2023-09-11T17:03:23.273904Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/tvktkj3bq24tyx4mnm7bokfkii",
"cancel": "https://api.replicate.com/v1/predictions/tvktkj3bq24tyx4mnm7bokfkii/cancel"
},
"version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208"
}
Using seed: 49875
Prompt: A <s0><s1> emoji of Zinedine Zidane
txt2img mode
0%| | 0/80 [00:00<?, ?it/s]
1%|▏ | 1/80 [00:00<00:15, 5.01it/s]
2%|▎ | 2/80 [00:00<00:15, 4.99it/s]
4%|▍ | 3/80 [00:00<00:15, 4.98it/s]
5%|▌ | 4/80 [00:00<00:15, 4.98it/s]
6%|▋ | 5/80 [00:01<00:15, 4.99it/s]
8%|▊ | 6/80 [00:01<00:14, 5.00it/s]
9%|▉ | 7/80 [00:01<00:14, 5.00it/s]
10%|█ | 8/80 [00:01<00:14, 5.00it/s]
11%|█▏ | 9/80 [00:01<00:14, 5.00it/s]
12%|█▎ | 10/80 [00:02<00:14, 5.00it/s]
14%|█▍ | 11/80 [00:02<00:13, 5.00it/s]
15%|█▌ | 12/80 [00:02<00:13, 5.00it/s]
16%|█▋ | 13/80 [00:02<00:13, 5.00it/s]
18%|█▊ | 14/80 [00:02<00:13, 5.00it/s]
19%|█▉ | 15/80 [00:03<00:13, 5.00it/s]
20%|██ | 16/80 [00:03<00:12, 5.00it/s]
21%|██▏ | 17/80 [00:03<00:12, 5.00it/s]
22%|██▎ | 18/80 [00:03<00:12, 5.00it/s]
24%|██▍ | 19/80 [00:03<00:12, 5.00it/s]
25%|██▌ | 20/80 [00:04<00:12, 5.00it/s]
26%|██▋ | 21/80 [00:04<00:11, 4.99it/s]
28%|██▊ | 22/80 [00:04<00:11, 4.99it/s]
29%|██▉ | 23/80 [00:04<00:11, 5.00it/s]
30%|███ | 24/80 [00:04<00:11, 4.99it/s]
31%|███▏ | 25/80 [00:05<00:11, 4.99it/s]
32%|███▎ | 26/80 [00:05<00:10, 4.99it/s]
34%|███▍ | 27/80 [00:05<00:10, 4.99it/s]
35%|███▌ | 28/80 [00:05<00:10, 4.99it/s]
36%|███▋ | 29/80 [00:05<00:10, 4.99it/s]
38%|███▊ | 30/80 [00:06<00:10, 4.98it/s]
39%|███▉ | 31/80 [00:06<00:09, 4.99it/s]
40%|████ | 32/80 [00:06<00:09, 4.99it/s]
41%|████▏ | 33/80 [00:06<00:09, 4.99it/s]
42%|████▎ | 34/80 [00:06<00:09, 4.99it/s]
44%|████▍ | 35/80 [00:07<00:09, 4.99it/s]
45%|████▌ | 36/80 [00:07<00:08, 4.99it/s]
46%|████▋ | 37/80 [00:07<00:08, 4.99it/s]
48%|████▊ | 38/80 [00:07<00:08, 4.98it/s]
49%|████▉ | 39/80 [00:07<00:08, 4.99it/s]
50%|█████ | 40/80 [00:08<00:08, 4.98it/s]
51%|█████▏ | 41/80 [00:08<00:07, 4.99it/s]
52%|█████▎ | 42/80 [00:08<00:07, 4.98it/s]
54%|█████▍ | 43/80 [00:08<00:07, 4.98it/s]
55%|█████▌ | 44/80 [00:08<00:07, 4.98it/s]
56%|█████▋ | 45/80 [00:09<00:07, 4.98it/s]
57%|█████▊ | 46/80 [00:09<00:06, 4.98it/s]
59%|█████▉ | 47/80 [00:09<00:06, 4.98it/s]
60%|██████ | 48/80 [00:09<00:06, 4.97it/s]
61%|██████▏ | 49/80 [00:09<00:06, 4.97it/s]
62%|██████▎ | 50/80 [00:10<00:06, 4.97it/s]
64%|██████▍ | 51/80 [00:10<00:05, 4.97it/s]
65%|██████▌ | 52/80 [00:10<00:05, 4.97it/s]
66%|██████▋ | 53/80 [00:10<00:05, 4.97it/s]
68%|██████▊ | 54/80 [00:10<00:05, 4.98it/s]
69%|██████▉ | 55/80 [00:11<00:05, 4.98it/s]
70%|███████ | 56/80 [00:11<00:04, 4.98it/s]
71%|███████▏ | 57/80 [00:11<00:04, 4.98it/s]
72%|███████▎ | 58/80 [00:11<00:04, 4.98it/s]
74%|███████▍ | 59/80 [00:11<00:04, 4.97it/s]
75%|███████▌ | 60/80 [00:12<00:04, 4.97it/s]
76%|███████▋ | 61/80 [00:12<00:03, 4.97it/s]
78%|███████▊ | 62/80 [00:12<00:03, 4.97it/s]
79%|███████▉ | 63/80 [00:12<00:03, 4.96it/s]
80%|████████ | 64/80 [00:12<00:03, 4.97it/s]
81%|████████▏ | 65/80 [00:13<00:03, 4.97it/s]
82%|████████▎ | 66/80 [00:13<00:02, 4.97it/s]
84%|████████▍ | 67/80 [00:13<00:02, 4.97it/s]
85%|████████▌ | 68/80 [00:13<00:02, 4.97it/s]
86%|████████▋ | 69/80 [00:13<00:02, 4.97it/s]
88%|████████▊ | 70/80 [00:14<00:02, 4.97it/s]
89%|████████▉ | 71/80 [00:14<00:01, 4.97it/s]
90%|█████████ | 72/80 [00:14<00:01, 4.97it/s]
91%|█████████▏| 73/80 [00:14<00:01, 4.97it/s]
92%|█████████▎| 74/80 [00:14<00:01, 4.97it/s]
94%|█████████▍| 75/80 [00:15<00:01, 4.97it/s]
95%|█████████▌| 76/80 [00:15<00:00, 4.96it/s]
96%|█████████▋| 77/80 [00:15<00:00, 4.96it/s]
98%|█████████▊| 78/80 [00:15<00:00, 4.96it/s]
99%|█████████▉| 79/80 [00:15<00:00, 4.96it/s]
100%|██████████| 80/80 [00:16<00:00, 4.96it/s]
100%|██████████| 80/80 [00:16<00:00, 4.98it/s]
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:00<00:02, 6.67it/s]
10%|█ | 2/20 [00:00<00:02, 6.60it/s]
15%|█▌ | 3/20 [00:00<00:02, 6.58it/s]
20%|██ | 4/20 [00:00<00:02, 6.57it/s]
25%|██▌ | 5/20 [00:00<00:02, 6.56it/s]
30%|███ | 6/20 [00:00<00:02, 6.53it/s]
35%|███▌ | 7/20 [00:01<00:01, 6.53it/s]
40%|████ | 8/20 [00:01<00:01, 6.53it/s]
45%|████▌ | 9/20 [00:01<00:01, 6.54it/s]
50%|█████ | 10/20 [00:01<00:01, 6.54it/s]
55%|█████▌ | 11/20 [00:01<00:01, 6.55it/s]
60%|██████ | 12/20 [00:01<00:01, 6.55it/s]
65%|██████▌ | 13/20 [00:01<00:01, 6.54it/s]
70%|███████ | 14/20 [00:02<00:00, 6.54it/s]
75%|███████▌ | 15/20 [00:02<00:00, 6.55it/s]
80%|████████ | 16/20 [00:02<00:00, 6.55it/s]
85%|████████▌ | 17/20 [00:02<00:00, 6.54it/s]
90%|█████████ | 18/20 [00:02<00:00, 6.53it/s]
95%|█████████▌| 19/20 [00:02<00:00, 6.53it/s]
100%|██████████| 20/20 [00:03<00:00, 6.53it/s]
100%|██████████| 20/20 [00:03<00:00, 6.54it/s]