Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
prompthero /openjourney:9936c200
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run prompthero/openjourney using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"prompthero/openjourney:9936c2001faa2194a261c01381f90e65261879985476014a0a37a334593a05eb",
{
input: {
seed: 23191,
width: 512,
height: 512,
prompt: "whimsical fantasy elegant rose floral botany maximalism with a wave of flowers garden flowing flowers floating in misty soft pink, aqua, soft apricot, smoke fractal, moody and big scale realistic flowers, octane render, by josephine wall art, isabelle menin, Jean, amy brown",
num_outputs: 1,
guidance_scale: 7,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run prompthero/openjourney using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"prompthero/openjourney:9936c2001faa2194a261c01381f90e65261879985476014a0a37a334593a05eb",
input={
"seed": 23191,
"width": 512,
"height": 512,
"prompt": "whimsical fantasy elegant rose floral botany maximalism with a wave of flowers garden flowing flowers floating in misty soft pink, aqua, soft apricot, smoke fractal, moody and big scale realistic flowers, octane render, by josephine wall art, isabelle menin, Jean, amy brown",
"num_outputs": 1,
"guidance_scale": 7,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run prompthero/openjourney using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "prompthero/openjourney:9936c2001faa2194a261c01381f90e65261879985476014a0a37a334593a05eb",
"input": {
"seed": 23191,
"width": 512,
"height": 512,
"prompt": "whimsical fantasy elegant rose floral botany maximalism with a wave of flowers garden flowing flowers floating in misty soft pink, aqua, soft apricot, smoke fractal, moody and big scale realistic flowers, octane render, by josephine wall art, isabelle menin, Jean, amy brown",
"num_outputs": 1,
"guidance_scale": 7,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-11-15T02:20:27.507686Z",
"created_at": "2022-11-15T02:20:23.435425Z",
"data_removed": false,
"error": null,
"id": "txy3tnvrmzdgdot3pjjov2l6k4",
"input": {
"seed": 23191,
"width": 512,
"height": 512,
"prompt": "whimsical fantasy elegant rose floral botany maximalism with a wave of flowers garden flowing flowers floating in misty soft pink, aqua, soft apricot, smoke fractal, moody and big scale realistic flowers, octane render, by josephine wall art, isabelle menin, Jean, amy brown",
"num_outputs": 1,
"guidance_scale": "7",
"num_inference_steps": 50
},
"logs": "Using seed: 23191\nGlobal seed set to 23191\n 0%| | 0/50 [00:00<?, ?it/s]\n 4%|▍ | 2/50 [00:00<00:03, 12.80it/s]\n 8%|▊ | 4/50 [00:00<00:03, 13.68it/s]\n 12%|█▏ | 6/50 [00:00<00:03, 13.97it/s]\n 16%|█▌ | 8/50 [00:00<00:03, 13.96it/s]\n 20%|██ | 10/50 [00:00<00:02, 14.01it/s]\n 24%|██▍ | 12/50 [00:00<00:02, 14.10it/s]\n 28%|██▊ | 14/50 [00:01<00:02, 14.16it/s]\n 32%|███▏ | 16/50 [00:01<00:02, 14.23it/s]\n 36%|███▌ | 18/50 [00:01<00:02, 14.27it/s]\n 40%|████ | 20/50 [00:01<00:02, 14.25it/s]\n 44%|████▍ | 22/50 [00:01<00:01, 14.26it/s]\n 48%|████▊ | 24/50 [00:01<00:01, 14.22it/s]\n 52%|█████▏ | 26/50 [00:01<00:01, 14.20it/s]\n 56%|█████▌ | 28/50 [00:01<00:01, 14.25it/s]\n 60%|██████ | 30/50 [00:02<00:01, 14.18it/s]\n 64%|██████▍ | 32/50 [00:02<00:01, 14.26it/s]\n 68%|██████▊ | 34/50 [00:02<00:01, 14.28it/s]\n 72%|███████▏ | 36/50 [00:02<00:00, 14.33it/s]\n 76%|███████▌ | 38/50 [00:02<00:00, 14.24it/s]\n 80%|████████ | 40/50 [00:02<00:00, 14.27it/s]\n 84%|████████▍ | 42/50 [00:02<00:00, 14.25it/s]\n 88%|████████▊ | 44/50 [00:03<00:00, 14.25it/s]\n 92%|█████████▏| 46/50 [00:03<00:00, 14.29it/s]\n 96%|█████████▌| 48/50 [00:03<00:00, 14.30it/s]\n100%|██████████| 50/50 [00:03<00:00, 14.33it/s]\n100%|██████████| 50/50 [00:03<00:00, 14.20it/s]",
"metrics": {
"predict_time": 4.036595,
"total_time": 4.072261
},
"output": [
"https://replicate.delivery/pbxt/eRFcnOLtIAyZBigLGEQO6HWiWRec6kJndEeMmpP9xFPXLVAgA/out-0.png"
],
"started_at": "2022-11-15T02:20:23.471091Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/txy3tnvrmzdgdot3pjjov2l6k4",
"cancel": "https://api.replicate.com/v1/predictions/txy3tnvrmzdgdot3pjjov2l6k4/cancel"
},
"version": "9936c2001faa2194a261c01381f90e65261879985476014a0a37a334593a05eb"
}
Using seed: 23191
Global seed set to 23191
0%| | 0/50 [00:00<?, ?it/s]
4%|▍ | 2/50 [00:00<00:03, 12.80it/s]
8%|▊ | 4/50 [00:00<00:03, 13.68it/s]
12%|█▏ | 6/50 [00:00<00:03, 13.97it/s]
16%|█▌ | 8/50 [00:00<00:03, 13.96it/s]
20%|██ | 10/50 [00:00<00:02, 14.01it/s]
24%|██▍ | 12/50 [00:00<00:02, 14.10it/s]
28%|██▊ | 14/50 [00:01<00:02, 14.16it/s]
32%|███▏ | 16/50 [00:01<00:02, 14.23it/s]
36%|███▌ | 18/50 [00:01<00:02, 14.27it/s]
40%|████ | 20/50 [00:01<00:02, 14.25it/s]
44%|████▍ | 22/50 [00:01<00:01, 14.26it/s]
48%|████▊ | 24/50 [00:01<00:01, 14.22it/s]
52%|█████▏ | 26/50 [00:01<00:01, 14.20it/s]
56%|█████▌ | 28/50 [00:01<00:01, 14.25it/s]
60%|██████ | 30/50 [00:02<00:01, 14.18it/s]
64%|██████▍ | 32/50 [00:02<00:01, 14.26it/s]
68%|██████▊ | 34/50 [00:02<00:01, 14.28it/s]
72%|███████▏ | 36/50 [00:02<00:00, 14.33it/s]
76%|███████▌ | 38/50 [00:02<00:00, 14.24it/s]
80%|████████ | 40/50 [00:02<00:00, 14.27it/s]
84%|████████▍ | 42/50 [00:02<00:00, 14.25it/s]
88%|████████▊ | 44/50 [00:03<00:00, 14.25it/s]
92%|█████████▏| 46/50 [00:03<00:00, 14.29it/s]
96%|█████████▌| 48/50 [00:03<00:00, 14.30it/s]
100%|██████████| 50/50 [00:03<00:00, 14.33it/s]
100%|██████████| 50/50 [00:03<00:00, 14.20it/s]