You're looking at a specific version of this model. Jump to the model overview.
prompthero /openjourney:ad59ca21
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run prompthero/openjourney using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"prompthero/openjourney:ad59ca21177f9e217b9075e7300cf6e14f7e5b4505b87b9689dbd866e9768969",
{
input: {
seed: null,
width: 512,
height: 512,
prompt: "mdjrny-v4 style portrait of female elf, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k",
scheduler: "DPMSolverMultistep",
num_outputs: 1,
guidance_scale: 7,
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run prompthero/openjourney using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"prompthero/openjourney:ad59ca21177f9e217b9075e7300cf6e14f7e5b4505b87b9689dbd866e9768969",
input={
"seed": null,
"width": 512,
"height": 512,
"prompt": "mdjrny-v4 style portrait of female elf, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k",
"scheduler": "DPMSolverMultistep",
"num_outputs": 1,
"guidance_scale": 7,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
# The prompthero/openjourney model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/prompthero/openjourney/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run prompthero/openjourney using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "ad59ca21177f9e217b9075e7300cf6e14f7e5b4505b87b9689dbd866e9768969",
"input": {
"seed": null,
"width": 512,
"height": 512,
"prompt": "mdjrny-v4 style portrait of female elf, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k",
"scheduler": "DPMSolverMultistep",
"num_outputs": 1,
"guidance_scale": 7,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-11-15T02:17:31Z",
"created_at": "2022-11-15T02:17:27.218186Z",
"data_removed": false,
"error": "",
"id": "hnv34qbn5nc2fkhfgxa2nhe5ka",
"input": {
"seed": null,
"width": 512,
"height": 512,
"prompt": "mdjrny-v4 style portrait of female elf, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha, 8k",
"num_outputs": 1,
"guidance_scale": "7",
"num_inference_steps": 50
},
"logs": "Using seed: 46041\r\nGlobal seed set to 46041\r\n 0%| | 0/50 [00:00<?, ?it/s]\r\n 4%|▍ | 2/50 [00:00<00:03, 13.23it/s]\r\n 8%|▊ | 4/50 [00:00<00:03, 13.55it/s]\r\n 12%|█▏ | 6/50 [00:00<00:03, 13.93it/s]\r\n 16%|█▌ | 8/50 [00:00<00:02, 14.09it/s]\r\n 20%|██ | 10/50 [00:00<00:02, 14.08it/s]\r\n 24%|██▍ | 12/50 [00:00<00:02, 13.94it/s]\r\n 28%|██▊ | 14/50 [00:01<00:02, 14.03it/s]\r\n 32%|███▏ | 16/50 [00:01<00:02, 14.05it/s]\r\n 36%|███▌ | 18/50 [00:01<00:02, 14.11it/s]\r\n 40%|████ | 20/50 [00:01<00:02, 14.17it/s]\r\n 44%|████▍ | 22/50 [00:01<00:01, 14.22it/s]\r\n 48%|████▊ | 24/50 [00:01<00:01, 14.27it/s]\r\n 52%|█████▏ | 26/50 [00:01<00:01, 14.30it/s]\r\n 56%|█████▌ | 28/50 [00:01<00:01, 14.32it/s]\r\n 60%|██████ | 30/50 [00:02<00:01, 14.31it/s]\r\n 64%|██████▍ | 32/50 [00:02<00:01, 14.30it/s]\r\n 68%|██████▊ | 34/50 [00:02<00:01, 14.29it/s]\r\n 72%|███████▏ | 36/50 [00:02<00:00, 14.29it/s]\r\n 76%|███████▌ | 38/50 [00:02<00:00, 14.33it/s]\r\n 80%|████████ | 40/50 [00:02<00:00, 14.04it/s]\r\n 84%|████████▍ | 42/50 [00:02<00:00, 14.09it/s]\r\n 88%|████████▊ | 44/50 [00:03<00:00, 14.15it/s]\r\n 92%|█████████▏| 46/50 [00:03<00:00, 14.20it/s]\r\n 96%|█████████▌| 48/50 [00:03<00:00, 14.18it/s]\r\n100%|██████████| 50/50 [00:03<00:00, 14.18it/s]\r\n100%|██████████| 50/50 [00:03<00:00, 14.15it/s]",
"metrics": {
"predict_time": 4,
"total_time": 3.781814
},
"output": [
"https://replicate.delivery/pbxt/LHh12rAtngYkItdmraLbWntEODUjeCI4g9wn9pXfiMO7iKAQA/out-0.png"
],
"started_at": "2022-11-15T02:17:27Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/hnv34qbn5nc2fkhfgxa2nhe5ka",
"cancel": "https://api.replicate.com/v1/predictions/hnv34qbn5nc2fkhfgxa2nhe5ka/cancel"
},
"version": "9936c2001faa2194a261c01381f90e65261879985476014a0a37a334593a05eb"
}
Using seed: 46041
Global seed set to 46041
0%| | 0/50 [00:00<?, ?it/s]
4%|▍ | 2/50 [00:00<00:03, 13.23it/s]
8%|▊ | 4/50 [00:00<00:03, 13.55it/s]
12%|█▏ | 6/50 [00:00<00:03, 13.93it/s]
16%|█▌ | 8/50 [00:00<00:02, 14.09it/s]
20%|██ | 10/50 [00:00<00:02, 14.08it/s]
24%|██▍ | 12/50 [00:00<00:02, 13.94it/s]
28%|██▊ | 14/50 [00:01<00:02, 14.03it/s]
32%|███▏ | 16/50 [00:01<00:02, 14.05it/s]
36%|███▌ | 18/50 [00:01<00:02, 14.11it/s]
40%|████ | 20/50 [00:01<00:02, 14.17it/s]
44%|████▍ | 22/50 [00:01<00:01, 14.22it/s]
48%|████▊ | 24/50 [00:01<00:01, 14.27it/s]
52%|█████▏ | 26/50 [00:01<00:01, 14.30it/s]
56%|█████▌ | 28/50 [00:01<00:01, 14.32it/s]
60%|██████ | 30/50 [00:02<00:01, 14.31it/s]
64%|██████▍ | 32/50 [00:02<00:01, 14.30it/s]
68%|██████▊ | 34/50 [00:02<00:01, 14.29it/s]
72%|███████▏ | 36/50 [00:02<00:00, 14.29it/s]
76%|███████▌ | 38/50 [00:02<00:00, 14.33it/s]
80%|████████ | 40/50 [00:02<00:00, 14.04it/s]
84%|████████▍ | 42/50 [00:02<00:00, 14.09it/s]
88%|████████▊ | 44/50 [00:03<00:00, 14.15it/s]
92%|█████████▏| 46/50 [00:03<00:00, 14.20it/s]
96%|█████████▌| 48/50 [00:03<00:00, 14.18it/s]
100%|██████████| 50/50 [00:03<00:00, 14.18it/s]
100%|██████████| 50/50 [00:03<00:00, 14.15it/s]
This example was created by a different version, prompthero/openjourney:9936c200.