You're looking at a specific version of this model. Jump to the model overview.
qr2ai /img2paint_controlnet:592691cf
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55",
{
input: {
seed: 7649977190,
image: "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg",
prompt: "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.",
condition_scale: 0.63,
negative_prompt: "low quality, bad quality, nsfw",
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"qr2ai/img2paint_controlnet:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55",
input={
"seed": 7649977190,
"image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg",
"prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.",
"condition_scale": 0.63,
"negative_prompt": "low quality, bad quality, nsfw",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run qr2ai/img2paint_controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55",
"input": {
"seed": 7649977190,
"image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg",
"prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.",
"condition_scale": 0.63,
"negative_prompt": "low quality, bad quality, nsfw",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/qr2ai/img2paint_controlnet@sha256:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55 \
-i 'seed=7649977190' \
-i 'image="https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg"' \
-i 'prompt="Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop."' \
-i 'condition_scale=0.63' \
-i 'negative_prompt="low quality, bad quality, nsfw"' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/qr2ai/img2paint_controlnet@sha256:592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 7649977190, "image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg", "prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.", "condition_scale": 0.63, "negative_prompt": "low quality, bad quality, nsfw", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.13. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-10-30T22:49:43.389344Z",
"created_at": "2023-10-30T22:49:26.081220Z",
"data_removed": false,
"error": null,
"id": "v5zofxlb37tyzbxw2tqm2pvkgq",
"input": {
"seed": 7649977190,
"image": "https://replicate.delivery/pbxt/Jn9H4XwOEn7reK9HAMsUa1dNkdf7C6oQKFpIb4Q7wD3ldHVv/Al-HamduLillah.jpg",
"prompt": "Intricate Floral Fusion: A photorealistic 8k masterpiece featuring vibrant vines and daisies in a fluid gouache painting style. Calligraphy strokes and natural lighting bring out the details, set against a white backdrop.",
"qr_data": null,
"condition_scale": 0.63,
"negative_prompt": "low quality, bad quality, nsfw",
"num_inference_steps": 50
},
"logs": "Using seed: 7649977190\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:14, 3.38it/s]\n 4%|▍ | 2/50 [00:00<00:14, 3.36it/s]\n 6%|▌ | 3/50 [00:00<00:13, 3.37it/s]\n 8%|▊ | 4/50 [00:01<00:13, 3.37it/s]\n 10%|█ | 5/50 [00:01<00:13, 3.36it/s]\n 12%|█▏ | 6/50 [00:01<00:13, 3.37it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.37it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.37it/s]\n 18%|█▊ | 9/50 [00:02<00:12, 3.37it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.37it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.37it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]\n 26%|██▌ | 13/50 [00:03<00:11, 3.36it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.36it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.36it/s]\n 32%|███▏ | 16/50 [00:04<00:10, 3.36it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.36it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.36it/s]\n 38%|███▊ | 19/50 [00:05<00:09, 3.36it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.36it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.36it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.35it/s]\n 46%|████▌ | 23/50 [00:06<00:08, 3.35it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.35it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.35it/s]\n 52%|█████▏ | 26/50 [00:07<00:07, 3.35it/s]\n 54%|█████▍ | 27/50 [00:08<00:06, 3.35it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.35it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.35it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.35it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.35it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.35it/s]\n 66%|██████▌ | 33/50 [00:09<00:05, 3.35it/s]\n 68%|██████▊ | 34/50 [00:10<00:04, 3.35it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.34it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.34it/s]\n 74%|███████▍ | 37/50 [00:11<00:03, 3.34it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.34it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.34it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.34it/s]\n 82%|████████▏ | 41/50 [00:12<00:02, 3.34it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.34it/s]\n 86%|████████▌ | 43/50 [00:12<00:02, 3.34it/s]\n 88%|████████▊ | 44/50 [00:13<00:01, 3.34it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.33it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.33it/s]\n 94%|█████████▍| 47/50 [00:14<00:00, 3.34it/s]\n 96%|█████████▌| 48/50 [00:14<00:00, 3.34it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.34it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.34it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.35it/s]",
"metrics": {
"predict_time": 17.335607,
"total_time": 17.308124
},
"output": "https://pbxt.replicate.delivery/mHYOMCayF0ofGC7wyiYPjHlMrDZJfWpDe08pE8rbYywNo8mjA/output.png",
"started_at": "2023-10-30T22:49:26.053737Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/v5zofxlb37tyzbxw2tqm2pvkgq",
"cancel": "https://api.replicate.com/v1/predictions/v5zofxlb37tyzbxw2tqm2pvkgq/cancel"
},
"version": "592691cf624bb863fe5a01673badff425607ba56dbc499a74bbfdacd3ec0da55"
}
Using seed: 7649977190
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:14, 3.38it/s]
4%|▍ | 2/50 [00:00<00:14, 3.36it/s]
6%|▌ | 3/50 [00:00<00:13, 3.37it/s]
8%|▊ | 4/50 [00:01<00:13, 3.37it/s]
10%|█ | 5/50 [00:01<00:13, 3.36it/s]
12%|█▏ | 6/50 [00:01<00:13, 3.37it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.37it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.37it/s]
18%|█▊ | 9/50 [00:02<00:12, 3.37it/s]
20%|██ | 10/50 [00:02<00:11, 3.37it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.37it/s]
24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]
26%|██▌ | 13/50 [00:03<00:11, 3.36it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.36it/s]
30%|███ | 15/50 [00:04<00:10, 3.36it/s]
32%|███▏ | 16/50 [00:04<00:10, 3.36it/s]
34%|███▍ | 17/50 [00:05<00:09, 3.36it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.36it/s]
38%|███▊ | 19/50 [00:05<00:09, 3.36it/s]
40%|████ | 20/50 [00:05<00:08, 3.36it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.36it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.35it/s]
46%|████▌ | 23/50 [00:06<00:08, 3.35it/s]
48%|████▊ | 24/50 [00:07<00:07, 3.35it/s]
50%|█████ | 25/50 [00:07<00:07, 3.35it/s]
52%|█████▏ | 26/50 [00:07<00:07, 3.35it/s]
54%|█████▍ | 27/50 [00:08<00:06, 3.35it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.35it/s]
58%|█████▊ | 29/50 [00:08<00:06, 3.35it/s]
60%|██████ | 30/50 [00:08<00:05, 3.35it/s]
62%|██████▏ | 31/50 [00:09<00:05, 3.35it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.35it/s]
66%|██████▌ | 33/50 [00:09<00:05, 3.35it/s]
68%|██████▊ | 34/50 [00:10<00:04, 3.35it/s]
70%|███████ | 35/50 [00:10<00:04, 3.34it/s]
72%|███████▏ | 36/50 [00:10<00:04, 3.34it/s]
74%|███████▍ | 37/50 [00:11<00:03, 3.34it/s]
76%|███████▌ | 38/50 [00:11<00:03, 3.34it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.34it/s]
80%|████████ | 40/50 [00:11<00:02, 3.34it/s]
82%|████████▏ | 41/50 [00:12<00:02, 3.34it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.34it/s]
86%|████████▌ | 43/50 [00:12<00:02, 3.34it/s]
88%|████████▊ | 44/50 [00:13<00:01, 3.34it/s]
90%|█████████ | 45/50 [00:13<00:01, 3.33it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.33it/s]
94%|█████████▍| 47/50 [00:14<00:00, 3.34it/s]
96%|█████████▌| 48/50 [00:14<00:00, 3.34it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.34it/s]
100%|██████████| 50/50 [00:14<00:00, 3.34it/s]
100%|██████████| 50/50 [00:14<00:00, 3.35it/s]