You're looking at a specific version of this model. Jump to the model overview.
shahildhotre /sdxl-finetune-whiteclaw:8ead6062
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run shahildhotre/sdxl-finetune-whiteclaw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"shahildhotre/sdxl-finetune-whiteclaw:8ead60620ef130afb844f351e95777224e05a2792c221089461869ee9e4385cf",
{
input: {
width: 1024,
height: 1024,
prompt: "white claw cans",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run shahildhotre/sdxl-finetune-whiteclaw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"shahildhotre/sdxl-finetune-whiteclaw:8ead60620ef130afb844f351e95777224e05a2792c221089461869ee9e4385cf",
input={
"width": 1024,
"height": 1024,
"prompt": "white claw cans",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run shahildhotre/sdxl-finetune-whiteclaw using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "shahildhotre/sdxl-finetune-whiteclaw:8ead60620ef130afb844f351e95777224e05a2792c221089461869ee9e4385cf",
"input": {
"width": 1024,
"height": 1024,
"prompt": "white claw cans",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/shahildhotre/sdxl-finetune-whiteclaw@sha256:8ead60620ef130afb844f351e95777224e05a2792c221089461869ee9e4385cf \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="white claw cans"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/shahildhotre/sdxl-finetune-whiteclaw@sha256:8ead60620ef130afb844f351e95777224e05a2792c221089461869ee9e4385cf
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "white claw cans", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-06-28T18:55:28.515955Z",
"created_at": "2024-06-28T18:55:05.850000Z",
"data_removed": false,
"error": null,
"id": "cxx8t9kyf9rgg0cgc0svj2b70c",
"input": {
"width": 1024,
"height": 1024,
"prompt": "white claw cans",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 6337\nEnsuring enough disk space...\nFree disk space: 1732876619776\nDownloading weights: https://replicate.delivery/pbxt/rwvzo0hcN0IWNdZCgfbpizCVnYZH6X7BSjGZLgdFfFvwjLDTA/trained_model.tar\n2024-06-28T18:55:09Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/3a601f772800c45d url=https://replicate.delivery/pbxt/rwvzo0hcN0IWNdZCgfbpizCVnYZH6X7BSjGZLgdFfFvwjLDTA/trained_model.tar\n2024-06-28T18:55:12Z | INFO | [ Complete ] dest=/src/weights-cache/3a601f772800c45d size=\"186 MB\" total_elapsed=2.974s url=https://replicate.delivery/pbxt/rwvzo0hcN0IWNdZCgfbpizCVnYZH6X7BSjGZLgdFfFvwjLDTA/trained_model.tar\nb''\nDownloaded weights in 3.123924493789673 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: white claw cans\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`\ndeprecate(\n 2%|▏ | 1/50 [00:00<00:11, 4.22it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.22it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.23it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.23it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.22it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.21it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.21it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.21it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.21it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.21it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.21it/s]\n 24%|██▍ | 12/50 [00:02<00:09, 4.21it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.21it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.21it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.22it/s]\n 32%|███▏ | 16/50 [00:03<00:08, 4.21it/s]\n 34%|███▍ | 17/50 [00:04<00:07, 4.20it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.20it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.20it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.21it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.21it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.21it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.21it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.20it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.21it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.20it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.20it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.21it/s]\n 58%|█████▊ | 29/50 [00:06<00:05, 4.20it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.20it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.19it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.19it/s]\n 66%|██████▌ | 33/50 [00:07<00:04, 4.19it/s]\n 68%|██████▊ | 34/50 [00:08<00:03, 4.19it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.20it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.20it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.19it/s]\n 76%|███████▌ | 38/50 [00:09<00:02, 4.19it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.19it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.19it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.19it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.19it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.19it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.19it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.19it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.20it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.19it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.19it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.19it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.19it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.20it/s]",
"metrics": {
"predict_time": 19.541705237,
"total_time": 22.665955
},
"output": [
"https://replicate.delivery/pbxt/zsR8vhHFrnq3FxvF7ZI1wsI1IlkIHdOi9ceX6QtMTC5PylhJA/out-0.png"
],
"started_at": "2024-06-28T18:55:08.974250Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/cxx8t9kyf9rgg0cgc0svj2b70c",
"cancel": "https://api.replicate.com/v1/predictions/cxx8t9kyf9rgg0cgc0svj2b70c/cancel"
},
"version": "8ead60620ef130afb844f351e95777224e05a2792c221089461869ee9e4385cf"
}
Using seed: 6337
Ensuring enough disk space...
Free disk space: 1732876619776
Downloading weights: https://replicate.delivery/pbxt/rwvzo0hcN0IWNdZCgfbpizCVnYZH6X7BSjGZLgdFfFvwjLDTA/trained_model.tar
2024-06-28T18:55:09Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/3a601f772800c45d url=https://replicate.delivery/pbxt/rwvzo0hcN0IWNdZCgfbpizCVnYZH6X7BSjGZLgdFfFvwjLDTA/trained_model.tar
2024-06-28T18:55:12Z | INFO | [ Complete ] dest=/src/weights-cache/3a601f772800c45d size="186 MB" total_elapsed=2.974s url=https://replicate.delivery/pbxt/rwvzo0hcN0IWNdZCgfbpizCVnYZH6X7BSjGZLgdFfFvwjLDTA/trained_model.tar
b''
Downloaded weights in 3.123924493789673 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: white claw cans
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`
deprecate(
2%|▏ | 1/50 [00:00<00:11, 4.22it/s]
4%|▍ | 2/50 [00:00<00:11, 4.22it/s]
6%|▌ | 3/50 [00:00<00:11, 4.23it/s]
8%|▊ | 4/50 [00:00<00:10, 4.23it/s]
10%|█ | 5/50 [00:01<00:10, 4.22it/s]
12%|█▏ | 6/50 [00:01<00:10, 4.21it/s]
14%|█▍ | 7/50 [00:01<00:10, 4.21it/s]
16%|█▌ | 8/50 [00:01<00:09, 4.21it/s]
18%|█▊ | 9/50 [00:02<00:09, 4.21it/s]
20%|██ | 10/50 [00:02<00:09, 4.21it/s]
22%|██▏ | 11/50 [00:02<00:09, 4.21it/s]
24%|██▍ | 12/50 [00:02<00:09, 4.21it/s]
26%|██▌ | 13/50 [00:03<00:08, 4.21it/s]
28%|██▊ | 14/50 [00:03<00:08, 4.21it/s]
30%|███ | 15/50 [00:03<00:08, 4.22it/s]
32%|███▏ | 16/50 [00:03<00:08, 4.21it/s]
34%|███▍ | 17/50 [00:04<00:07, 4.20it/s]
36%|███▌ | 18/50 [00:04<00:07, 4.20it/s]
38%|███▊ | 19/50 [00:04<00:07, 4.20it/s]
40%|████ | 20/50 [00:04<00:07, 4.21it/s]
42%|████▏ | 21/50 [00:04<00:06, 4.21it/s]
44%|████▍ | 22/50 [00:05<00:06, 4.21it/s]
46%|████▌ | 23/50 [00:05<00:06, 4.21it/s]
48%|████▊ | 24/50 [00:05<00:06, 4.20it/s]
50%|█████ | 25/50 [00:05<00:05, 4.21it/s]
52%|█████▏ | 26/50 [00:06<00:05, 4.20it/s]
54%|█████▍ | 27/50 [00:06<00:05, 4.20it/s]
56%|█████▌ | 28/50 [00:06<00:05, 4.21it/s]
58%|█████▊ | 29/50 [00:06<00:05, 4.20it/s]
60%|██████ | 30/50 [00:07<00:04, 4.20it/s]
62%|██████▏ | 31/50 [00:07<00:04, 4.19it/s]
64%|██████▍ | 32/50 [00:07<00:04, 4.19it/s]
66%|██████▌ | 33/50 [00:07<00:04, 4.19it/s]
68%|██████▊ | 34/50 [00:08<00:03, 4.19it/s]
70%|███████ | 35/50 [00:08<00:03, 4.20it/s]
72%|███████▏ | 36/50 [00:08<00:03, 4.20it/s]
74%|███████▍ | 37/50 [00:08<00:03, 4.19it/s]
76%|███████▌ | 38/50 [00:09<00:02, 4.19it/s]
78%|███████▊ | 39/50 [00:09<00:02, 4.19it/s]
80%|████████ | 40/50 [00:09<00:02, 4.19it/s]
82%|████████▏ | 41/50 [00:09<00:02, 4.19it/s]
84%|████████▍ | 42/50 [00:09<00:01, 4.19it/s]
86%|████████▌ | 43/50 [00:10<00:01, 4.19it/s]
88%|████████▊ | 44/50 [00:10<00:01, 4.19it/s]
90%|█████████ | 45/50 [00:10<00:01, 4.19it/s]
92%|█████████▏| 46/50 [00:10<00:00, 4.20it/s]
94%|█████████▍| 47/50 [00:11<00:00, 4.19it/s]
96%|█████████▌| 48/50 [00:11<00:00, 4.19it/s]
98%|█████████▊| 49/50 [00:11<00:00, 4.19it/s]
100%|██████████| 50/50 [00:11<00:00, 4.19it/s]
100%|██████████| 50/50 [00:11<00:00, 4.20it/s]