You're looking at a specific version of this model. Jump to the model overview.
tencent /hunyuan-video:8283f26b
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run tencent/hunyuan-video using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"tencent/hunyuan-video:8283f26be7ce5dc0119324b4752cbfd3970b3ef1b923c4d3c35eb6546518747a",
{
input: {
fps: 24,
width: 864,
height: 480,
prompt: "A close-up of a wave crashing against the beach, the sea foam spells out “WAKE UP” on the sand",
infer_steps: 50,
video_length: 129,
embedded_guidance_scale: 6
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run tencent/hunyuan-video using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"tencent/hunyuan-video:8283f26be7ce5dc0119324b4752cbfd3970b3ef1b923c4d3c35eb6546518747a",
input={
"fps": 24,
"width": 864,
"height": 480,
"prompt": "A close-up of a wave crashing against the beach, the sea foam spells out “WAKE UP” on the sand",
"infer_steps": 50,
"video_length": 129,
"embedded_guidance_scale": 6
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tencent/hunyuan-video using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "tencent/hunyuan-video:8283f26be7ce5dc0119324b4752cbfd3970b3ef1b923c4d3c35eb6546518747a",
"input": {
"fps": 24,
"width": 864,
"height": 480,
"prompt": "A close-up of a wave crashing against the beach, the sea foam spells out “WAKE UP” on the sand",
"infer_steps": 50,
"video_length": 129,
"embedded_guidance_scale": 6
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2025-01-13T18:51:46.304228Z",
"created_at": "2025-01-13T18:49:43.186000Z",
"data_removed": false,
"error": null,
"id": "cpyfdz0p29rmc0cmc40a7xwws4",
"input": {
"fps": 24,
"width": 864,
"height": 480,
"prompt": "A close-up of a wave crashing against the beach, the sea foam spells out “WAKE UP” on the sand",
"infer_steps": 50,
"video_length": 129,
"embedded_guidance_scale": 6
},
"logs": "Using seed: 61973\n0%| | 0/50 [00:00<?, ?it/s]\n 0%| | 0/50 [00:00<?, ?it/s]\n 0%| | 0/50 [00:00<?, ?it/s]\n 0%| | 0/50 [00:00<?, ?it/s]\n2%|▏ | 1/50 [00:02<01:53, 2.32s/it]\n2%|▏ | 1/50 [00:02<01:53, 2.32s/it]\n2%|▏ | 1/50 [00:02<01:53, 2.32s/it]\n 2%|▏ | 1/50 [00:02<01:53, 2.32s/it]\n4%|▍ | 2/50 [00:04<01:50, 2.30s/it]\n4%|▍ | 2/50 [00:04<01:50, 2.30s/it]\n4%|▍ | 2/50 [00:04<01:50, 2.30s/it]\n 4%|▍ | 2/50 [00:04<01:50, 2.30s/it]\n6%|▌ | 3/50 [00:06<01:48, 2.31s/it]\n6%|▌ | 3/50 [00:06<01:48, 2.31s/it]\n6%|▌ | 3/50 [00:06<01:48, 2.31s/it]\n 6%|▌ | 3/50 [00:06<01:48, 2.31s/it]\n8%|▊ | 4/50 [00:09<01:46, 2.32s/it]\n8%|▊ | 4/50 [00:09<01:46, 2.32s/it]\n8%|▊ | 4/50 [00:09<01:46, 2.32s/it]\n 8%|▊ | 4/50 [00:09<01:46, 2.32s/it]\n10%|█ | 5/50 [00:11<01:44, 2.32s/it]\n10%|█ | 5/50 [00:11<01:44, 2.32s/it]\n10%|█ | 5/50 [00:11<01:44, 2.32s/it]\n 10%|█ | 5/50 [00:11<01:44, 2.32s/it]\n12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]\n12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]\n12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]\n 12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]\n14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]\n14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]\n14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]\n 14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]\n16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]\n16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]\n16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]\n 16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]\n18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]\n18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]\n18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]\n 18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]\n20%|██ | 10/50 [00:23<01:33, 2.34s/it]\n20%|██ | 10/50 [00:23<01:33, 2.34s/it]\n20%|██ | 10/50 [00:23<01:33, 2.34s/it]\n 20%|██ | 10/50 [00:23<01:33, 2.34s/it]\n22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]\n22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]\n22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]\n 22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]\n24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]\n24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]\n24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]\n 24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]\n26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]\n26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]\n26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]\n 26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]\n28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]\n28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]\n28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]\n 28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]\n30%|███ | 15/50 [00:34<01:21, 2.34s/it]\n30%|███ | 15/50 [00:34<01:21, 2.34s/it]\n30%|███ | 15/50 [00:34<01:21, 2.34s/it]\n 30%|███ | 15/50 [00:34<01:21, 2.34s/it]\n32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]\n32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]\n32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]\n 32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]\n34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]\n34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]\n34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]\n 34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]\n36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]\n36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]\n36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]\n 36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]\n38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]\n38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]\n38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]\n 38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]\n40%|████ | 20/50 [00:46<01:10, 2.34s/it]\n40%|████ | 20/50 [00:46<01:10, 2.34s/it]\n40%|████ | 20/50 [00:46<01:10, 2.34s/it]\n 40%|████ | 20/50 [00:46<01:10, 2.34s/it]\n42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]\n42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]\n42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]\n 42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]\n44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]\n44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]\n44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]\n 44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]\n46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]\n46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]\n46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]\n 46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]\n48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]\n48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]\n48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]\n 48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]\n50%|█████ | 25/50 [00:58<00:58, 2.34s/it]\n50%|█████ | 25/50 [00:58<00:58, 2.34s/it]\n50%|█████ | 25/50 [00:58<00:58, 2.34s/it]\n 50%|█████ | 25/50 [00:58<00:58, 2.34s/it]\n52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]\n52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]\n52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]\n 52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]\n54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]\n54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]\n54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]\n 54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]\n56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]\n56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]\n56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]\n 56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]\n58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]\n58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]\n58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]\n 58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]\n60%|██████ | 30/50 [01:10<00:46, 2.34s/it]\n60%|██████ | 30/50 [01:10<00:46, 2.34s/it]\n60%|██████ | 30/50 [01:10<00:46, 2.34s/it]\n 60%|██████ | 30/50 [01:10<00:46, 2.34s/it]\n62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]\n62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]\n62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]\n 62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]\n64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]\n64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]\n64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]\n 64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]\n66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]\n66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]\n66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]\n 66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]\n68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]\n68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]\n68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]\n 68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]\n70%|███████ | 35/50 [01:21<00:35, 2.34s/it]\n70%|███████ | 35/50 [01:21<00:35, 2.34s/it]\n70%|███████ | 35/50 [01:21<00:35, 2.34s/it]\n 70%|███████ | 35/50 [01:21<00:35, 2.34s/it]\n72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]\n72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]\n72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]\n 72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]\n74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]\n74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]\n74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]\n 74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]\n76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]\n76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]\n76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]\n 76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]\n78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]\n78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]\n78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]\n 78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]\n80%|████████ | 40/50 [01:33<00:23, 2.33s/it]\n80%|████████ | 40/50 [01:33<00:23, 2.33s/it]\n80%|████████ | 40/50 [01:33<00:23, 2.33s/it]\n 80%|████████ | 40/50 [01:33<00:23, 2.33s/it]\n82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]\n82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]\n82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]\n 82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]\n84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]\n84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]\n84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]\n 84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]\n86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]\n86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]\n86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]\n 86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]\n88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]\n88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]\n88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]\n 88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]\n90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]\n90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]\n90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]\n 90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]\n92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]\n92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]\n92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]\n 92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]\n94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]\n94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]\n94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]\n 94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]\n96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]\n96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]\n96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]\n 96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]\n98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]\n98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]\n98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]\n 98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\n100%|██████████| 50/50 [01:56<00:00, 2.33s/it]\nhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\nTo disable this warning, you can either:\n- Avoid using `tokenizers` before the fork if possible\n- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)",
"metrics": {
"predict_time": 123.110420091,
"total_time": 123.118228
},
"output": "https://replicate.delivery/xezq/Pe1SZFxWroxFHSyU2sIZ9iGIo4FRmdfQ7DmOa5s6bNjCLxEUA/output_61973.mp4",
"started_at": "2025-01-13T18:49:43.193808Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/bcwr-2rpaeupo4xfpsw226cm4zgdmvry2o6qr6c2ocwlvftoxu66wqpja",
"get": "https://api.replicate.com/v1/predictions/cpyfdz0p29rmc0cmc40a7xwws4",
"cancel": "https://api.replicate.com/v1/predictions/cpyfdz0p29rmc0cmc40a7xwws4/cancel"
},
"version": "8283f26be7ce5dc0119324b4752cbfd3970b3ef1b923c4d3c35eb6546518747a"
}
Using seed: 61973
0%| | 0/50 [00:00<?, ?it/s]
0%| | 0/50 [00:00<?, ?it/s]
0%| | 0/50 [00:00<?, ?it/s]
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:02<01:53, 2.32s/it]
2%|▏ | 1/50 [00:02<01:53, 2.32s/it]
2%|▏ | 1/50 [00:02<01:53, 2.32s/it]
2%|▏ | 1/50 [00:02<01:53, 2.32s/it]
4%|▍ | 2/50 [00:04<01:50, 2.30s/it]
4%|▍ | 2/50 [00:04<01:50, 2.30s/it]
4%|▍ | 2/50 [00:04<01:50, 2.30s/it]
4%|▍ | 2/50 [00:04<01:50, 2.30s/it]
6%|▌ | 3/50 [00:06<01:48, 2.31s/it]
6%|▌ | 3/50 [00:06<01:48, 2.31s/it]
6%|▌ | 3/50 [00:06<01:48, 2.31s/it]
6%|▌ | 3/50 [00:06<01:48, 2.31s/it]
8%|▊ | 4/50 [00:09<01:46, 2.32s/it]
8%|▊ | 4/50 [00:09<01:46, 2.32s/it]
8%|▊ | 4/50 [00:09<01:46, 2.32s/it]
8%|▊ | 4/50 [00:09<01:46, 2.32s/it]
10%|█ | 5/50 [00:11<01:44, 2.32s/it]
10%|█ | 5/50 [00:11<01:44, 2.32s/it]
10%|█ | 5/50 [00:11<01:44, 2.32s/it]
10%|█ | 5/50 [00:11<01:44, 2.32s/it]
12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]
12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]
12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]
12%|█▏ | 6/50 [00:13<01:42, 2.32s/it]
14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]
14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]
14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]
14%|█▍ | 7/50 [00:16<01:40, 2.33s/it]
16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]
16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]
16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]
16%|█▌ | 8/50 [00:18<01:37, 2.33s/it]
18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]
18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]
18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]
18%|█▊ | 9/50 [00:20<01:35, 2.33s/it]
20%|██ | 10/50 [00:23<01:33, 2.34s/it]
20%|██ | 10/50 [00:23<01:33, 2.34s/it]
20%|██ | 10/50 [00:23<01:33, 2.34s/it]
20%|██ | 10/50 [00:23<01:33, 2.34s/it]
22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]
22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]
22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]
22%|██▏ | 11/50 [00:25<01:31, 2.34s/it]
24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]
24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]
24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]
24%|██▍ | 12/50 [00:27<01:28, 2.34s/it]
26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]
26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]
26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]
26%|██▌ | 13/50 [00:30<01:26, 2.34s/it]
28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]
28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]
28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]
28%|██▊ | 14/50 [00:32<01:24, 2.34s/it]
30%|███ | 15/50 [00:34<01:21, 2.34s/it]
30%|███ | 15/50 [00:34<01:21, 2.34s/it]
30%|███ | 15/50 [00:34<01:21, 2.34s/it]
30%|███ | 15/50 [00:34<01:21, 2.34s/it]
32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]
32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]
32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]
32%|███▏ | 16/50 [00:37<01:19, 2.34s/it]
34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]
34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]
34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]
34%|███▍ | 17/50 [00:39<01:17, 2.34s/it]
36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]
36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]
36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]
36%|███▌ | 18/50 [00:41<01:14, 2.34s/it]
38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]
38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]
38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]
38%|███▊ | 19/50 [00:44<01:12, 2.34s/it]
40%|████ | 20/50 [00:46<01:10, 2.34s/it]
40%|████ | 20/50 [00:46<01:10, 2.34s/it]
40%|████ | 20/50 [00:46<01:10, 2.34s/it]
40%|████ | 20/50 [00:46<01:10, 2.34s/it]
42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]
42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]
42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]
42%|████▏ | 21/50 [00:48<01:07, 2.34s/it]
44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]
44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]
44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]
44%|████▍ | 22/50 [00:51<01:05, 2.34s/it]
46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]
46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]
46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]
46%|████▌ | 23/50 [00:53<01:03, 2.34s/it]
48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]
48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]
48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]
48%|████▊ | 24/50 [00:56<01:00, 2.34s/it]
50%|█████ | 25/50 [00:58<00:58, 2.34s/it]
50%|█████ | 25/50 [00:58<00:58, 2.34s/it]
50%|█████ | 25/50 [00:58<00:58, 2.34s/it]
50%|█████ | 25/50 [00:58<00:58, 2.34s/it]
52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]
52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]
52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]
52%|█████▏ | 26/50 [01:00<00:56, 2.34s/it]
54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]
54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]
54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]
54%|█████▍ | 27/50 [01:03<00:53, 2.34s/it]
56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]
56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]
56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]
56%|█████▌ | 28/50 [01:05<00:51, 2.34s/it]
58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]
58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]
58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]
58%|█████▊ | 29/50 [01:07<00:49, 2.34s/it]
60%|██████ | 30/50 [01:10<00:46, 2.34s/it]
60%|██████ | 30/50 [01:10<00:46, 2.34s/it]
60%|██████ | 30/50 [01:10<00:46, 2.34s/it]
60%|██████ | 30/50 [01:10<00:46, 2.34s/it]
62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]
62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]
62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]
62%|██████▏ | 31/50 [01:12<00:44, 2.34s/it]
64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]
64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]
64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]
64%|██████▍ | 32/50 [01:14<00:42, 2.34s/it]
66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]
66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]
66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]
66%|██████▌ | 33/50 [01:17<00:39, 2.34s/it]
68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]
68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]
68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]
68%|██████▊ | 34/50 [01:19<00:37, 2.33s/it]
70%|███████ | 35/50 [01:21<00:35, 2.34s/it]
70%|███████ | 35/50 [01:21<00:35, 2.34s/it]
70%|███████ | 35/50 [01:21<00:35, 2.34s/it]
70%|███████ | 35/50 [01:21<00:35, 2.34s/it]
72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]
72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]
72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]
72%|███████▏ | 36/50 [01:24<00:32, 2.33s/it]
74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]
74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]
74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]
74%|███████▍ | 37/50 [01:26<00:30, 2.33s/it]
76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]
76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]
76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]
76%|███████▌ | 38/50 [01:28<00:28, 2.33s/it]
78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]
78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]
78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]
78%|███████▊ | 39/50 [01:31<00:25, 2.33s/it]
80%|████████ | 40/50 [01:33<00:23, 2.33s/it]
80%|████████ | 40/50 [01:33<00:23, 2.33s/it]
80%|████████ | 40/50 [01:33<00:23, 2.33s/it]
80%|████████ | 40/50 [01:33<00:23, 2.33s/it]
82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]
82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]
82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]
82%|████████▏ | 41/50 [01:35<00:20, 2.33s/it]
84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]
84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]
84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]
84%|████████▍ | 42/50 [01:38<00:18, 2.33s/it]
86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]
86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]
86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]
86%|████████▌ | 43/50 [01:40<00:16, 2.33s/it]
88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]
88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]
88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]
88%|████████▊ | 44/50 [01:42<00:14, 2.33s/it]
90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]
90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]
90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]
90%|█████████ | 45/50 [01:45<00:11, 2.33s/it]
92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]
92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]
92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]
92%|█████████▏| 46/50 [01:47<00:09, 2.33s/it]
94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]
94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]
94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]
94%|█████████▍| 47/50 [01:49<00:07, 2.33s/it]
96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]
96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]
96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]
96%|█████████▌| 48/50 [01:52<00:04, 2.33s/it]
98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]
98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]
98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]
98%|█████████▊| 49/50 [01:54<00:02, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
100%|██████████| 50/50 [01:56<00:00, 2.33s/it]
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)