You're looking at a specific version of this model. Jump to the model overview.
tstramer /arcane-diffusion:4cbb3f91
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run tstramer/arcane-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"tstramer/arcane-diffusion:4cbb3f91f9ba049151efb8922fdecc6703d419ea682b87ff94c5876addabfb19",
{
input: {
width: 512,
height: 512,
prompt: "harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K",
scheduler: "K-LMS",
num_outputs: 1,
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 150
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run tstramer/arcane-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"tstramer/arcane-diffusion:4cbb3f91f9ba049151efb8922fdecc6703d419ea682b87ff94c5876addabfb19",
input={
"width": 512,
"height": 512,
"prompt": "harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K",
"scheduler": "K-LMS",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 150
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tstramer/arcane-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "4cbb3f91f9ba049151efb8922fdecc6703d419ea682b87ff94c5876addabfb19",
"input": {
"width": 512,
"height": 512,
"prompt": "harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K",
"scheduler": "K-LMS",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 150
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tstramer/arcane-diffusion@sha256:4cbb3f91f9ba049151efb8922fdecc6703d419ea682b87ff94c5876addabfb19 \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K"' \
-i 'scheduler="K-LMS"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=150'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tstramer/arcane-diffusion@sha256:4cbb3f91f9ba049151efb8922fdecc6703d419ea682b87ff94c5876addabfb19
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K", "scheduler": "K-LMS", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 150 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.035. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-11-08T01:58:18.276112Z",
"created_at": "2022-11-08T01:55:35.056826Z",
"data_removed": false,
"error": null,
"id": "2ggapwprc5cmrpxijznihpzrw4",
"input": {
"width": 512,
"height": 512,
"prompt": "harry potter, arcane style, intricate highly detailed digital painting artstation concept art smooth sharp focus illustration Unreal Engine 5 8K",
"scheduler": "K-LMS",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": "150"
},
"logs": "Using seed: 60774\n\n 0%| | 0/150 [00:00<?, ?it/s]\n 1%| | 1/150 [00:02<05:26, 2.19s/it]\n 2%|▏ | 3/150 [00:02<01:31, 1.60it/s]\n 3%|▎ | 5/150 [00:02<00:49, 2.93it/s]\n 5%|▍ | 7/150 [00:02<00:32, 4.38it/s]\n 6%|▌ | 9/150 [00:02<00:24, 5.86it/s]\n 7%|▋ | 11/150 [00:02<00:19, 7.28it/s]\n 9%|▊ | 13/150 [00:03<00:15, 8.57it/s]\n 10%|█ | 15/150 [00:03<00:13, 9.69it/s]\n 11%|█▏ | 17/150 [00:03<00:12, 10.63it/s]\n 13%|█▎ | 19/150 [00:03<00:11, 11.39it/s]\n 14%|█▍ | 21/150 [00:03<00:10, 11.92it/s]\n 15%|█▌ | 23/150 [00:03<00:10, 12.35it/s]\n 17%|█▋ | 25/150 [00:03<00:09, 12.73it/s]\n 18%|█▊ | 27/150 [00:04<00:09, 12.88it/s]\n 19%|█▉ | 29/150 [00:04<00:09, 12.68it/s]\n 21%|██ | 31/150 [00:04<00:09, 12.99it/s]\n 22%|██▏ | 33/150 [00:04<00:08, 13.24it/s]\n 23%|██▎ | 35/150 [00:04<00:08, 13.29it/s]\n 25%|██▍ | 37/150 [00:04<00:08, 13.46it/s]\n 26%|██▌ | 39/150 [00:05<00:08, 13.51it/s]\n 27%|██▋ | 41/150 [00:05<00:08, 13.52it/s]\n 29%|██▊ | 43/150 [00:05<00:07, 13.57it/s]\n 30%|███ | 45/150 [00:05<00:07, 13.65it/s]\n 31%|███▏ | 47/150 [00:05<00:07, 13.64it/s]\n 33%|███▎ | 49/150 [00:05<00:07, 13.54it/s]\n 34%|███▍ | 51/150 [00:05<00:07, 13.58it/s]\n 35%|███▌ | 53/150 [00:06<00:07, 13.66it/s]\n 37%|███▋ | 55/150 [00:06<00:06, 13.72it/s]\n 38%|███▊ | 57/150 [00:06<00:07, 12.92it/s]\n 39%|███▉ | 59/150 [00:06<00:07, 12.22it/s]\n 41%|████ | 61/150 [00:06<00:07, 12.41it/s]\n 42%|████▏ | 63/150 [00:06<00:06, 12.61it/s]\n 43%|████▎ | 65/150 [00:07<00:06, 12.90it/s]\n 45%|████▍ | 67/150 [00:07<00:06, 13.17it/s]\n 46%|████▌ | 69/150 [00:07<00:06, 13.32it/s]\n 47%|████▋ | 71/150 [00:07<00:05, 13.50it/s]\n 49%|████▊ | 73/150 [00:07<00:05, 13.61it/s]\n 50%|█████ | 75/150 [00:07<00:05, 13.47it/s]\n 51%|█████▏ | 77/150 [00:07<00:05, 13.46it/s]\n 53%|█████▎ | 79/150 [00:08<00:05, 13.55it/s]\n 54%|█████▍ | 81/150 [00:08<00:05, 13.61it/s]\n 55%|█████▌ | 83/150 [00:08<00:04, 13.61it/s]\n 57%|█████▋ | 85/150 [00:08<00:04, 13.62it/s]\n 58%|█████▊ | 87/150 [00:08<00:04, 13.67it/s]\n 59%|█████▉ | 89/150 [00:08<00:04, 13.54it/s]\n 61%|██████ | 91/150 [00:08<00:04, 13.47it/s]\n 62%|██████▏ | 93/150 [00:09<00:04, 13.56it/s]\n 63%|██████▎ | 95/150 [00:09<00:04, 13.48it/s]\n 65%|██████▍ | 97/150 [00:09<00:03, 13.48it/s]\n 66%|██████▌ | 99/150 [00:09<00:03, 13.60it/s]\n 67%|██████▋ | 101/150 [00:09<00:03, 13.63it/s]\n 69%|██████▊ | 103/150 [00:09<00:03, 13.64it/s]\n 70%|███████ | 105/150 [00:09<00:03, 13.56it/s]\n 71%|███████▏ | 107/150 [00:10<00:03, 13.57it/s]\n 73%|███████▎ | 109/150 [00:10<00:03, 13.55it/s]\n 74%|███████▍ | 111/150 [00:10<00:02, 13.64it/s]\n 75%|███████▌ | 113/150 [00:10<00:02, 13.70it/s]\n 77%|███████▋ | 115/150 [00:10<00:02, 13.57it/s]\n 78%|███████▊ | 117/150 [00:10<00:02, 13.72it/s]\n 79%|███████▉ | 119/150 [00:10<00:02, 13.82it/s]\n 81%|████████ | 121/150 [00:11<00:02, 13.86it/s]\n 82%|████████▏ | 123/150 [00:11<00:01, 13.88it/s]\n 83%|████████▎ | 125/150 [00:11<00:01, 13.90it/s]\n 85%|████████▍ | 127/150 [00:11<00:01, 13.93it/s]\n 86%|████████▌ | 129/150 [00:11<00:01, 13.80it/s]\n 87%|████████▋ | 131/150 [00:11<00:01, 13.78it/s]\n 89%|████████▊ | 133/150 [00:11<00:01, 13.80it/s]\n 90%|█████████ | 135/150 [00:12<00:01, 13.86it/s]\n 91%|█████████▏| 137/150 [00:12<00:00, 13.88it/s]\n 93%|█████████▎| 139/150 [00:12<00:00, 13.87it/s]\n 94%|█████████▍| 141/150 [00:12<00:00, 13.87it/s]\n 95%|█████████▌| 143/150 [00:12<00:00, 13.61it/s]\n 97%|█████████▋| 145/150 [00:12<00:00, 13.68it/s]\n 98%|█████████▊| 147/150 [00:13<00:00, 13.50it/s]\n 99%|█████████▉| 149/150 [00:13<00:00, 13.62it/s]\n100%|██████████| 150/150 [00:13<00:00, 11.34it/s]",
"metrics": {
"predict_time": 16.478773,
"total_time": 163.219286
},
"output": [
"https://replicate.delivery/pbxt/x1CKfwEm3OUBda2BRorIZRwaQNMrRNkIFO1uqhX5FXUdT7ePA/out-0.png"
],
"started_at": "2022-11-08T01:58:01.797339Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/2ggapwprc5cmrpxijznihpzrw4",
"cancel": "https://api.replicate.com/v1/predictions/2ggapwprc5cmrpxijznihpzrw4/cancel"
},
"version": "1f4cdaee82b13c1f92706a211f55d92d7ee87b13e2c2ba6b998a7817ffc5017f"
}
Using seed: 60774
0%| | 0/150 [00:00<?, ?it/s]
1%| | 1/150 [00:02<05:26, 2.19s/it]
2%|▏ | 3/150 [00:02<01:31, 1.60it/s]
3%|▎ | 5/150 [00:02<00:49, 2.93it/s]
5%|▍ | 7/150 [00:02<00:32, 4.38it/s]
6%|▌ | 9/150 [00:02<00:24, 5.86it/s]
7%|▋ | 11/150 [00:02<00:19, 7.28it/s]
9%|▊ | 13/150 [00:03<00:15, 8.57it/s]
10%|█ | 15/150 [00:03<00:13, 9.69it/s]
11%|█▏ | 17/150 [00:03<00:12, 10.63it/s]
13%|█▎ | 19/150 [00:03<00:11, 11.39it/s]
14%|█▍ | 21/150 [00:03<00:10, 11.92it/s]
15%|█▌ | 23/150 [00:03<00:10, 12.35it/s]
17%|█▋ | 25/150 [00:03<00:09, 12.73it/s]
18%|█▊ | 27/150 [00:04<00:09, 12.88it/s]
19%|█▉ | 29/150 [00:04<00:09, 12.68it/s]
21%|██ | 31/150 [00:04<00:09, 12.99it/s]
22%|██▏ | 33/150 [00:04<00:08, 13.24it/s]
23%|██▎ | 35/150 [00:04<00:08, 13.29it/s]
25%|██▍ | 37/150 [00:04<00:08, 13.46it/s]
26%|██▌ | 39/150 [00:05<00:08, 13.51it/s]
27%|██▋ | 41/150 [00:05<00:08, 13.52it/s]
29%|██▊ | 43/150 [00:05<00:07, 13.57it/s]
30%|███ | 45/150 [00:05<00:07, 13.65it/s]
31%|███▏ | 47/150 [00:05<00:07, 13.64it/s]
33%|███▎ | 49/150 [00:05<00:07, 13.54it/s]
34%|███▍ | 51/150 [00:05<00:07, 13.58it/s]
35%|███▌ | 53/150 [00:06<00:07, 13.66it/s]
37%|███▋ | 55/150 [00:06<00:06, 13.72it/s]
38%|███▊ | 57/150 [00:06<00:07, 12.92it/s]
39%|███▉ | 59/150 [00:06<00:07, 12.22it/s]
41%|████ | 61/150 [00:06<00:07, 12.41it/s]
42%|████▏ | 63/150 [00:06<00:06, 12.61it/s]
43%|████▎ | 65/150 [00:07<00:06, 12.90it/s]
45%|████▍ | 67/150 [00:07<00:06, 13.17it/s]
46%|████▌ | 69/150 [00:07<00:06, 13.32it/s]
47%|████▋ | 71/150 [00:07<00:05, 13.50it/s]
49%|████▊ | 73/150 [00:07<00:05, 13.61it/s]
50%|█████ | 75/150 [00:07<00:05, 13.47it/s]
51%|█████▏ | 77/150 [00:07<00:05, 13.46it/s]
53%|█████▎ | 79/150 [00:08<00:05, 13.55it/s]
54%|█████▍ | 81/150 [00:08<00:05, 13.61it/s]
55%|█████▌ | 83/150 [00:08<00:04, 13.61it/s]
57%|█████▋ | 85/150 [00:08<00:04, 13.62it/s]
58%|█████▊ | 87/150 [00:08<00:04, 13.67it/s]
59%|█████▉ | 89/150 [00:08<00:04, 13.54it/s]
61%|██████ | 91/150 [00:08<00:04, 13.47it/s]
62%|██████▏ | 93/150 [00:09<00:04, 13.56it/s]
63%|██████▎ | 95/150 [00:09<00:04, 13.48it/s]
65%|██████▍ | 97/150 [00:09<00:03, 13.48it/s]
66%|██████▌ | 99/150 [00:09<00:03, 13.60it/s]
67%|██████▋ | 101/150 [00:09<00:03, 13.63it/s]
69%|██████▊ | 103/150 [00:09<00:03, 13.64it/s]
70%|███████ | 105/150 [00:09<00:03, 13.56it/s]
71%|███████▏ | 107/150 [00:10<00:03, 13.57it/s]
73%|███████▎ | 109/150 [00:10<00:03, 13.55it/s]
74%|███████▍ | 111/150 [00:10<00:02, 13.64it/s]
75%|███████▌ | 113/150 [00:10<00:02, 13.70it/s]
77%|███████▋ | 115/150 [00:10<00:02, 13.57it/s]
78%|███████▊ | 117/150 [00:10<00:02, 13.72it/s]
79%|███████▉ | 119/150 [00:10<00:02, 13.82it/s]
81%|████████ | 121/150 [00:11<00:02, 13.86it/s]
82%|████████▏ | 123/150 [00:11<00:01, 13.88it/s]
83%|████████▎ | 125/150 [00:11<00:01, 13.90it/s]
85%|████████▍ | 127/150 [00:11<00:01, 13.93it/s]
86%|████████▌ | 129/150 [00:11<00:01, 13.80it/s]
87%|████████▋ | 131/150 [00:11<00:01, 13.78it/s]
89%|████████▊ | 133/150 [00:11<00:01, 13.80it/s]
90%|█████████ | 135/150 [00:12<00:01, 13.86it/s]
91%|█████████▏| 137/150 [00:12<00:00, 13.88it/s]
93%|█████████▎| 139/150 [00:12<00:00, 13.87it/s]
94%|█████████▍| 141/150 [00:12<00:00, 13.87it/s]
95%|█████████▌| 143/150 [00:12<00:00, 13.61it/s]
97%|█████████▋| 145/150 [00:12<00:00, 13.68it/s]
98%|█████████▊| 147/150 [00:13<00:00, 13.50it/s]
99%|█████████▉| 149/150 [00:13<00:00, 13.62it/s]
100%|██████████| 150/150 [00:13<00:00, 11.34it/s]
This example was created by a different version, tstramer/arcane-diffusion:1f4cdaee.