Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run afiaka87/glid-3-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"afiaka87/glid-3-xl:742660111a36a544bd6de5acab0b46db0115eae9b091267d5ec48d885d564671",
{
input: {
seed: -1,
steps: 100,
width: 256,
height: 256,
prompt: "a giant cat sleeping on the beach",
negative: "",
batch_size: 1,
guidance_scale: 5,
aesthetic_rating: 9,
aesthetic_weight: 0.5,
init_skip_fraction: 0,
intermediate_outputs: false
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run afiaka87/glid-3-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"afiaka87/glid-3-xl:742660111a36a544bd6de5acab0b46db0115eae9b091267d5ec48d885d564671",
input={
"seed": -1,
"steps": 100,
"width": 256,
"height": 256,
"prompt": "a giant cat sleeping on the beach",
"negative": "",
"batch_size": 1,
"guidance_scale": 5,
"aesthetic_rating": 9,
"aesthetic_weight": 0.5,
"init_skip_fraction": 0,
"intermediate_outputs": False
}
)
# The afiaka87/glid-3-xl model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/afiaka87/glid-3-xl/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run afiaka87/glid-3-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "afiaka87/glid-3-xl:742660111a36a544bd6de5acab0b46db0115eae9b091267d5ec48d885d564671",
"input": {
"seed": -1,
"steps": 100,
"width": 256,
"height": 256,
"prompt": "a giant cat sleeping on the beach",
"negative": "",
"batch_size": 1,
"guidance_scale": 5,
"aesthetic_rating": 9,
"aesthetic_weight": 0.5,
"init_skip_fraction": 0,
"intermediate_outputs": false
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-07-13T06:47:20.792835Z",
"created_at": "2022-07-13T06:47:09.315226Z",
"data_removed": false,
"error": null,
"id": "a5nwiv552ncpzo7xky7bpr42hq",
"input": {
"seed": -1,
"steps": 100,
"width": 256,
"height": 256,
"prompt": "a giant cat sleeping on the beach",
"batch_size": 1,
"guidance_scale": 5,
"aesthetic_rating": 9,
"aesthetic_weight": 0.5
},
"logs": "Using seed 3268308253\nRunning simulation for a giant cat sleeping on the beach\nEncoding text embeddings with a giant cat sleeping on the beach dimensions\nUsing aesthetic embedding 9 with weight 0.5\nRunning diffusion...\n\n 0%| | 0/100 [00:00<?, ?it/s]\n 1%| | 1/100 [00:00<00:43, 2.29it/s]\n 2%|▏ | 2/100 [00:00<00:38, 2.51it/s]\n 3%|▎ | 3/100 [00:01<00:37, 2.58it/s]\n 5%|▌ | 5/100 [00:01<00:21, 4.48it/s]\n 7%|▋ | 7/100 [00:01<00:15, 6.05it/s]\n 9%|▉ | 9/100 [00:01<00:12, 7.30it/s]\n 11%|█ | 11/100 [00:01<00:10, 8.23it/s]\n 13%|█▎ | 13/100 [00:02<00:09, 8.88it/s]\n 15%|█▌ | 15/100 [00:02<00:09, 9.32it/s]\n 17%|█▋ | 17/100 [00:02<00:08, 9.68it/s]\n 19%|█▉ | 19/100 [00:02<00:08, 9.99it/s]\n 21%|██ | 21/100 [00:02<00:07, 10.20it/s]\n 23%|██▎ | 23/100 [00:03<00:07, 10.29it/s]\n 25%|██▌ | 25/100 [00:03<00:07, 10.31it/s]\n 27%|██▋ | 27/100 [00:03<00:07, 10.36it/s]\n 29%|██▉ | 29/100 [00:03<00:06, 10.45it/s]\n 31%|███ | 31/100 [00:03<00:06, 10.54it/s]\n 33%|███▎ | 33/100 [00:04<00:06, 10.58it/s]\n 35%|███▌ | 35/100 [00:04<00:06, 10.52it/s]\n 37%|███▋ | 37/100 [00:04<00:06, 10.48it/s]\n 39%|███▉ | 39/100 [00:04<00:05, 10.52it/s]\n 41%|████ | 41/100 [00:04<00:05, 10.57it/s]\n 43%|████▎ | 43/100 [00:04<00:05, 10.61it/s]\n 45%|████▌ | 45/100 [00:05<00:05, 10.53it/s]\n 47%|████▋ | 47/100 [00:05<00:05, 10.52it/s]\n 49%|████▉ | 49/100 [00:05<00:04, 10.51it/s]\n 51%|█████ | 51/100 [00:05<00:04, 10.54it/s]\n 53%|█████▎ | 53/100 [00:05<00:04, 10.56it/s]\n 55%|█████▌ | 55/100 [00:06<00:04, 10.53it/s]\n 57%|█████▋ | 57/100 [00:06<00:04, 10.50it/s]\n 59%|█████▉ | 59/100 [00:06<00:03, 10.50it/s]\n 61%|██████ | 61/100 [00:06<00:03, 10.50it/s]\n 63%|██████▎ | 63/100 [00:06<00:03, 10.53it/s]\n 65%|██████▌ | 65/100 [00:07<00:03, 10.50it/s]\n 67%|██████▋ | 67/100 [00:07<00:03, 10.53it/s]\n 69%|██████▉ | 69/100 [00:07<00:02, 10.49it/s]\n 71%|███████ | 71/100 [00:07<00:02, 10.50it/s]\n 73%|███████▎ | 73/100 [00:07<00:02, 10.52it/s]\n 75%|███████▌ | 75/100 [00:08<00:02, 10.50it/s]\n 77%|███████▋ | 77/100 [00:08<00:02, 10.50it/s]\n 79%|███████▉ | 79/100 [00:08<00:02, 10.50it/s]\n 81%|████████ | 81/100 [00:08<00:01, 10.51it/s]\n 83%|████████▎ | 83/100 [00:08<00:01, 10.51it/s]\n 85%|████████▌ | 85/100 [00:08<00:01, 10.51it/s]\n 87%|████████▋ | 87/100 [00:09<00:01, 10.51it/s]\n 89%|████████▉ | 89/100 [00:09<00:01, 10.50it/s]\n 91%|█████████ | 91/100 [00:09<00:00, 10.50it/s]\n 93%|█████████▎| 93/100 [00:09<00:00, 10.55it/s]\n 95%|█████████▌| 95/100 [00:09<00:00, 10.50it/s]\n 97%|█████████▋| 97/100 [00:10<00:00, 10.51it/s]\n 99%|█████████▉| 99/100 [00:10<00:00, 10.53it/s]\nSaving final sample/s\n100%|██████████| 100/100 [00:10<00:00, 9.62it/s]",
"metrics": {
"predict_time": 11.267158,
"total_time": 11.477609
},
"output": [
[
"https://replicate.delivery/mgxm/1c887c1b-1022-4117-bba4-cf454ca07228/current_0.png"
]
],
"started_at": "2022-07-13T06:47:09.525677Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/a5nwiv552ncpzo7xky7bpr42hq",
"cancel": "https://api.replicate.com/v1/predictions/a5nwiv552ncpzo7xky7bpr42hq/cancel"
},
"version": "742660111a36a544bd6de5acab0b46db0115eae9b091267d5ec48d885d564671"
}
Using seed 3268308253
Running simulation for a giant cat sleeping on the beach
Encoding text embeddings with a giant cat sleeping on the beach dimensions
Using aesthetic embedding 9 with weight 0.5
Running diffusion...
0%| | 0/100 [00:00<?, ?it/s]
1%| | 1/100 [00:00<00:43, 2.29it/s]
2%|▏ | 2/100 [00:00<00:38, 2.51it/s]
3%|▎ | 3/100 [00:01<00:37, 2.58it/s]
5%|▌ | 5/100 [00:01<00:21, 4.48it/s]
7%|▋ | 7/100 [00:01<00:15, 6.05it/s]
9%|▉ | 9/100 [00:01<00:12, 7.30it/s]
11%|█ | 11/100 [00:01<00:10, 8.23it/s]
13%|█▎ | 13/100 [00:02<00:09, 8.88it/s]
15%|█▌ | 15/100 [00:02<00:09, 9.32it/s]
17%|█▋ | 17/100 [00:02<00:08, 9.68it/s]
19%|█▉ | 19/100 [00:02<00:08, 9.99it/s]
21%|██ | 21/100 [00:02<00:07, 10.20it/s]
23%|██▎ | 23/100 [00:03<00:07, 10.29it/s]
25%|██▌ | 25/100 [00:03<00:07, 10.31it/s]
27%|██▋ | 27/100 [00:03<00:07, 10.36it/s]
29%|██▉ | 29/100 [00:03<00:06, 10.45it/s]
31%|███ | 31/100 [00:03<00:06, 10.54it/s]
33%|███▎ | 33/100 [00:04<00:06, 10.58it/s]
35%|███▌ | 35/100 [00:04<00:06, 10.52it/s]
37%|███▋ | 37/100 [00:04<00:06, 10.48it/s]
39%|███▉ | 39/100 [00:04<00:05, 10.52it/s]
41%|████ | 41/100 [00:04<00:05, 10.57it/s]
43%|████▎ | 43/100 [00:04<00:05, 10.61it/s]
45%|████▌ | 45/100 [00:05<00:05, 10.53it/s]
47%|████▋ | 47/100 [00:05<00:05, 10.52it/s]
49%|████▉ | 49/100 [00:05<00:04, 10.51it/s]
51%|█████ | 51/100 [00:05<00:04, 10.54it/s]
53%|█████▎ | 53/100 [00:05<00:04, 10.56it/s]
55%|█████▌ | 55/100 [00:06<00:04, 10.53it/s]
57%|█████▋ | 57/100 [00:06<00:04, 10.50it/s]
59%|█████▉ | 59/100 [00:06<00:03, 10.50it/s]
61%|██████ | 61/100 [00:06<00:03, 10.50it/s]
63%|██████▎ | 63/100 [00:06<00:03, 10.53it/s]
65%|██████▌ | 65/100 [00:07<00:03, 10.50it/s]
67%|██████▋ | 67/100 [00:07<00:03, 10.53it/s]
69%|██████▉ | 69/100 [00:07<00:02, 10.49it/s]
71%|███████ | 71/100 [00:07<00:02, 10.50it/s]
73%|███████▎ | 73/100 [00:07<00:02, 10.52it/s]
75%|███████▌ | 75/100 [00:08<00:02, 10.50it/s]
77%|███████▋ | 77/100 [00:08<00:02, 10.50it/s]
79%|███████▉ | 79/100 [00:08<00:02, 10.50it/s]
81%|████████ | 81/100 [00:08<00:01, 10.51it/s]
83%|████████▎ | 83/100 [00:08<00:01, 10.51it/s]
85%|████████▌ | 85/100 [00:08<00:01, 10.51it/s]
87%|████████▋ | 87/100 [00:09<00:01, 10.51it/s]
89%|████████▉ | 89/100 [00:09<00:01, 10.50it/s]
91%|█████████ | 91/100 [00:09<00:00, 10.50it/s]
93%|█████████▎| 93/100 [00:09<00:00, 10.55it/s]
95%|█████████▌| 95/100 [00:09<00:00, 10.50it/s]
97%|█████████▋| 97/100 [00:10<00:00, 10.51it/s]
99%|█████████▉| 99/100 [00:10<00:00, 10.53it/s]
Saving final sample/s
100%|██████████| 100/100 [00:10<00:00, 9.62it/s]