You're looking at a specific version of this model. Jump to the model overview.
alexgenovese /test-endpoint:cacd901f
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run alexgenovese/test-endpoint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"alexgenovese/test-endpoint:cacd901fa63f464ab00d47dcca090658defb4d3d75ff047f564151f854d23764",
{
input: {
seed: null,
width: 1024,
height: 1024,
prompt: "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3",
scheduler: "PNDM",
base_model: "FFusion/FFusionXL-BASE",
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
negative_prompt: "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run alexgenovese/test-endpoint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"alexgenovese/test-endpoint:cacd901fa63f464ab00d47dcca090658defb4d3d75ff047f564151f854d23764",
input={
"seed": null,
"width": 1024,
"height": 1024,
"prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3",
"scheduler": "PNDM",
"base_model": "FFusion/FFusionXL-BASE",
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run alexgenovese/test-endpoint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "alexgenovese/test-endpoint:cacd901fa63f464ab00d47dcca090658defb4d3d75ff047f564151f854d23764",
"input": {
"seed": null,
"width": 1024,
"height": 1024,
"prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3",
"scheduler": "PNDM",
"base_model": "FFusion/FFusionXL-BASE",
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/alexgenovese/test-endpoint@sha256:cacd901fa63f464ab00d47dcca090658defb4d3d75ff047f564151f854d23764 \
-i 'seed=null' \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3"' \
-i 'scheduler="PNDM"' \
-i 'base_model="FFusion/FFusionXL-BASE"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'negative_prompt="worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting"' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/alexgenovese/test-endpoint@sha256:cacd901fa63f464ab00d47dcca090658defb4d3d75ff047f564151f854d23764
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": null, "width": 1024, "height": 1024, "prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3", "scheduler": "PNDM", "base_model": "FFusion/FFusionXL-BASE", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.019. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-22T20:02:12.199470Z",
"created_at": "2023-09-22T20:01:59.458620Z",
"data_removed": false,
"error": null,
"id": "wwhxk6rbuksj2qucmd3swphcdm",
"input": {
"seed": null,
"width": 1024,
"height": 1024,
"prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3",
"scheduler": "PNDM",
"base_model": "FFusion/FFusionXL-BASE",
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
"num_inference_steps": 50
},
"logs": "Using seed: 7649\nLoading sdxl pipeline...\nA mixture of fp16 and non-fp16 filenames will be loaded.\nLoaded fp16 filenames:\n[text_encoder/model.fp16.safetensors, vae_0_9/diffusion_pytorch_model.fp16.safetensors, text_encoder_2/model.fp16.safetensors, vae_1_0/diffusion_pytorch_model.fp16.safetensors, unet/diffusion_pytorch_model.fp16.safetensors, vae/diffusion_pytorch_model.fp16.safetensors]\nLoaded non-fp16 filenames:\n[model.safetensors\nIf this behavior is not expected, please check your folder structure.\nLoading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]\nLoading pipeline components...: 14%|█▍ | 1/7 [00:00<00:00, 6.66it/s]\nLoading pipeline components...: 43%|████▎ | 3/7 [00:00<00:00, 8.77it/s]\nLoading pipeline components...: 71%|███████▏ | 5/7 [00:00<00:00, 11.31it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 2.29it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 3.04it/s]\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.73it/s]\n 4%|▍ | 2/50 [00:00<00:08, 5.60it/s]\n 6%|▌ | 3/50 [00:00<00:07, 6.66it/s]\n 8%|▊ | 4/50 [00:00<00:06, 7.27it/s]\n 10%|█ | 5/50 [00:00<00:05, 7.67it/s]\n 12%|█▏ | 6/50 [00:00<00:05, 7.97it/s]\n 14%|█▍ | 7/50 [00:00<00:05, 8.17it/s]\n 16%|█▌ | 8/50 [00:01<00:05, 8.31it/s]\n 18%|█▊ | 9/50 [00:01<00:04, 8.40it/s]\n 20%|██ | 10/50 [00:01<00:04, 8.46it/s]\n 22%|██▏ | 11/50 [00:01<00:04, 8.51it/s]\n 24%|██▍ | 12/50 [00:01<00:04, 8.54it/s]\n 26%|██▌ | 13/50 [00:01<00:04, 8.56it/s]\n 28%|██▊ | 14/50 [00:01<00:04, 8.47it/s]\n 30%|███ | 15/50 [00:01<00:04, 8.51it/s]\n 32%|███▏ | 16/50 [00:02<00:03, 8.54it/s]\n 34%|███▍ | 17/50 [00:02<00:03, 8.56it/s]\n 36%|███▌ | 18/50 [00:02<00:03, 8.58it/s]\n 38%|███▊ | 19/50 [00:02<00:03, 8.59it/s]\n 40%|████ | 20/50 [00:02<00:03, 8.60it/s]\n 42%|████▏ | 21/50 [00:02<00:03, 8.52it/s]\n 44%|████▍ | 22/50 [00:02<00:03, 8.44it/s]\n 46%|████▌ | 23/50 [00:02<00:03, 8.48it/s]\n 48%|████▊ | 24/50 [00:02<00:03, 8.52it/s]\n 50%|█████ | 25/50 [00:03<00:02, 8.55it/s]\n 52%|█████▏ | 26/50 [00:03<00:02, 8.57it/s]\n 54%|█████▍ | 27/50 [00:03<00:03, 7.53it/s]\n 56%|█████▌ | 28/50 [00:03<00:02, 7.76it/s]\n 58%|█████▊ | 29/50 [00:03<00:02, 8.00it/s]\n 60%|██████ | 30/50 [00:03<00:02, 8.17it/s]\n 62%|██████▏ | 31/50 [00:03<00:02, 8.21it/s]\n 64%|██████▍ | 32/50 [00:03<00:02, 8.32it/s]\n 66%|██████▌ | 33/50 [00:04<00:02, 8.41it/s]\n 68%|██████▊ | 34/50 [00:04<00:01, 8.40it/s]\n 70%|███████ | 35/50 [00:04<00:01, 8.46it/s]\n 72%|███████▏ | 36/50 [00:04<00:01, 8.51it/s]\n 74%|███████▍ | 37/50 [00:04<00:01, 8.54it/s]\n 76%|███████▌ | 38/50 [00:04<00:01, 8.56it/s]\n 78%|███████▊ | 39/50 [00:04<00:01, 8.56it/s]\n 80%|████████ | 40/50 [00:04<00:01, 8.57it/s]\n 82%|████████▏ | 41/50 [00:04<00:01, 8.58it/s]\n 84%|████████▍ | 42/50 [00:05<00:00, 8.59it/s]\n 86%|████████▌ | 43/50 [00:05<00:00, 8.59it/s]\n 88%|████████▊ | 44/50 [00:05<00:00, 8.60it/s]\n 90%|█████████ | 45/50 [00:05<00:00, 8.52it/s]\n 92%|█████████▏| 46/50 [00:05<00:00, 8.36it/s]\n 94%|█████████▍| 47/50 [00:05<00:00, 8.42it/s]\n 96%|█████████▌| 48/50 [00:05<00:00, 8.42it/s]\n 98%|█████████▊| 49/50 [00:05<00:00, 8.47it/s]\n100%|██████████| 50/50 [00:06<00:00, 8.51it/s]\n100%|██████████| 50/50 [00:06<00:00, 8.25it/s]",
"metrics": {
"predict_time": 12.821431,
"total_time": 12.74085
},
"output": [
"https://replicate.delivery/pbxt/YRnIHam8EYa0Bhe902tLRSmcrPweduCEuKJ9PkjkCfYGm0NjA/out-0.png"
],
"started_at": "2023-09-22T20:01:59.378039Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/wwhxk6rbuksj2qucmd3swphcdm",
"cancel": "https://api.replicate.com/v1/predictions/wwhxk6rbuksj2qucmd3swphcdm/cancel"
},
"version": "cacd901fa63f464ab00d47dcca090658defb4d3d75ff047f564151f854d23764"
}
Using seed: 7649
Loading sdxl pipeline...
A mixture of fp16 and non-fp16 filenames will be loaded.
Loaded fp16 filenames:
[text_encoder/model.fp16.safetensors, vae_0_9/diffusion_pytorch_model.fp16.safetensors, text_encoder_2/model.fp16.safetensors, vae_1_0/diffusion_pytorch_model.fp16.safetensors, unet/diffusion_pytorch_model.fp16.safetensors, vae/diffusion_pytorch_model.fp16.safetensors]
Loaded non-fp16 filenames:
[model.safetensors
If this behavior is not expected, please check your folder structure.
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
Loading pipeline components...: 14%|█▍ | 1/7 [00:00<00:00, 6.66it/s]
Loading pipeline components...: 43%|████▎ | 3/7 [00:00<00:00, 8.77it/s]
Loading pipeline components...: 71%|███████▏ | 5/7 [00:00<00:00, 11.31it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 2.29it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 3.04it/s]
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.73it/s]
4%|▍ | 2/50 [00:00<00:08, 5.60it/s]
6%|▌ | 3/50 [00:00<00:07, 6.66it/s]
8%|▊ | 4/50 [00:00<00:06, 7.27it/s]
10%|█ | 5/50 [00:00<00:05, 7.67it/s]
12%|█▏ | 6/50 [00:00<00:05, 7.97it/s]
14%|█▍ | 7/50 [00:00<00:05, 8.17it/s]
16%|█▌ | 8/50 [00:01<00:05, 8.31it/s]
18%|█▊ | 9/50 [00:01<00:04, 8.40it/s]
20%|██ | 10/50 [00:01<00:04, 8.46it/s]
22%|██▏ | 11/50 [00:01<00:04, 8.51it/s]
24%|██▍ | 12/50 [00:01<00:04, 8.54it/s]
26%|██▌ | 13/50 [00:01<00:04, 8.56it/s]
28%|██▊ | 14/50 [00:01<00:04, 8.47it/s]
30%|███ | 15/50 [00:01<00:04, 8.51it/s]
32%|███▏ | 16/50 [00:02<00:03, 8.54it/s]
34%|███▍ | 17/50 [00:02<00:03, 8.56it/s]
36%|███▌ | 18/50 [00:02<00:03, 8.58it/s]
38%|███▊ | 19/50 [00:02<00:03, 8.59it/s]
40%|████ | 20/50 [00:02<00:03, 8.60it/s]
42%|████▏ | 21/50 [00:02<00:03, 8.52it/s]
44%|████▍ | 22/50 [00:02<00:03, 8.44it/s]
46%|████▌ | 23/50 [00:02<00:03, 8.48it/s]
48%|████▊ | 24/50 [00:02<00:03, 8.52it/s]
50%|█████ | 25/50 [00:03<00:02, 8.55it/s]
52%|█████▏ | 26/50 [00:03<00:02, 8.57it/s]
54%|█████▍ | 27/50 [00:03<00:03, 7.53it/s]
56%|█████▌ | 28/50 [00:03<00:02, 7.76it/s]
58%|█████▊ | 29/50 [00:03<00:02, 8.00it/s]
60%|██████ | 30/50 [00:03<00:02, 8.17it/s]
62%|██████▏ | 31/50 [00:03<00:02, 8.21it/s]
64%|██████▍ | 32/50 [00:03<00:02, 8.32it/s]
66%|██████▌ | 33/50 [00:04<00:02, 8.41it/s]
68%|██████▊ | 34/50 [00:04<00:01, 8.40it/s]
70%|███████ | 35/50 [00:04<00:01, 8.46it/s]
72%|███████▏ | 36/50 [00:04<00:01, 8.51it/s]
74%|███████▍ | 37/50 [00:04<00:01, 8.54it/s]
76%|███████▌ | 38/50 [00:04<00:01, 8.56it/s]
78%|███████▊ | 39/50 [00:04<00:01, 8.56it/s]
80%|████████ | 40/50 [00:04<00:01, 8.57it/s]
82%|████████▏ | 41/50 [00:04<00:01, 8.58it/s]
84%|████████▍ | 42/50 [00:05<00:00, 8.59it/s]
86%|████████▌ | 43/50 [00:05<00:00, 8.59it/s]
88%|████████▊ | 44/50 [00:05<00:00, 8.60it/s]
90%|█████████ | 45/50 [00:05<00:00, 8.52it/s]
92%|█████████▏| 46/50 [00:05<00:00, 8.36it/s]
94%|█████████▍| 47/50 [00:05<00:00, 8.42it/s]
96%|█████████▌| 48/50 [00:05<00:00, 8.42it/s]
98%|█████████▊| 49/50 [00:05<00:00, 8.47it/s]
100%|██████████| 50/50 [00:06<00:00, 8.51it/s]
100%|██████████| 50/50 [00:06<00:00, 8.25it/s]