Readme
Test ANY diffuser model on Huggingface.com
How it works
- Copy the model you want to test. Example: SG161222/RealVisXL_V4.0
- Fill the form
- Run the inference
Use Huggingface model name to test a ANY XL model
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run alexgenovese/test-endpoint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"alexgenovese/test-endpoint:7b1b908e2e28ee517404087adadabe32602530d4f44d20cfac8941b9a05ce267",
{
input: {
width: 1024,
height: 1024,
prompt: "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3. detailed face and detailed skin. cinematic lighting, movie still",
scheduler: "K_EULER",
base_model: "SG161222/RealVisXL_V1.0",
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
negative_prompt: "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run alexgenovese/test-endpoint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"alexgenovese/test-endpoint:7b1b908e2e28ee517404087adadabe32602530d4f44d20cfac8941b9a05ce267",
input={
"width": 1024,
"height": 1024,
"prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3. detailed face and detailed skin. cinematic lighting, movie still",
"scheduler": "K_EULER",
"base_model": "SG161222/RealVisXL_V1.0",
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run alexgenovese/test-endpoint using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "alexgenovese/test-endpoint:7b1b908e2e28ee517404087adadabe32602530d4f44d20cfac8941b9a05ce267",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3. detailed face and detailed skin. cinematic lighting, movie still",
"scheduler": "K_EULER",
"base_model": "SG161222/RealVisXL_V1.0",
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/alexgenovese/test-endpoint@sha256:7b1b908e2e28ee517404087adadabe32602530d4f44d20cfac8941b9a05ce267 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3. detailed face and detailed skin. cinematic lighting, movie still"' \
-i 'scheduler="K_EULER"' \
-i 'base_model="SG161222/RealVisXL_V1.0"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'negative_prompt="worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting"' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/alexgenovese/test-endpoint@sha256:7b1b908e2e28ee517404087adadabe32602530d4f44d20cfac8941b9a05ce267
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3. detailed face and detailed skin. cinematic lighting, movie still", "scheduler": "K_EULER", "base_model": "SG161222/RealVisXL_V1.0", "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.016. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-09-22T19:44:57.083473Z",
"created_at": "2023-09-22T19:44:42.001062Z",
"data_removed": false,
"error": null,
"id": "pnrolmzbk5ldbbj5vssu2e3tky",
"input": {
"width": 1024,
"height": 1024,
"prompt": "A realistic fashion photography of an elegant 30 years old blonde woman in an hotel with one red bag. ((full shot)) 8k uhd, dslr, soft lighting, high quality, Fujifilm XT3. detailed face and detailed skin. cinematic lighting, movie still",
"scheduler": "K_EULER",
"base_model": "SG161222/RealVisXL_V1.0",
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"negative_prompt": "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting",
"num_inference_steps": 50
},
"logs": "Using seed: 22956\nLoading sdxl pipeline...\nLoading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]\nLoading pipeline components...: 14%|█▍ | 1/7 [00:00<00:01, 4.77it/s]\nLoading pipeline components...: 43%|████▎ | 3/7 [00:00<00:00, 6.68it/s]\nLoading pipeline components...: 71%|███████▏ | 5/7 [00:00<00:00, 9.09it/s]\nLoading pipeline components...: 86%|████████▌ | 6/7 [00:01<00:00, 4.32it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 1.50it/s]\nLoading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 2.36it/s]\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:07, 6.92it/s]\n 4%|▍ | 2/50 [00:00<00:06, 7.68it/s]\n 6%|▌ | 3/50 [00:00<00:06, 7.44it/s]\n 8%|▊ | 4/50 [00:00<00:06, 7.22it/s]\n 10%|█ | 5/50 [00:00<00:06, 7.13it/s]\n 12%|█▏ | 6/50 [00:00<00:06, 6.95it/s]\n 14%|█▍ | 7/50 [00:00<00:06, 7.14it/s]\n 16%|█▌ | 8/50 [00:01<00:05, 7.48it/s]\n 18%|█▊ | 9/50 [00:01<00:05, 7.58it/s]\n 20%|██ | 10/50 [00:01<00:05, 7.53it/s]\n 22%|██▏ | 11/50 [00:01<00:05, 7.44it/s]\n 24%|██▍ | 12/50 [00:01<00:05, 7.39it/s]\n 26%|██▌ | 13/50 [00:01<00:04, 7.49it/s]\n 28%|██▊ | 14/50 [00:01<00:04, 7.73it/s]\n 30%|███ | 15/50 [00:02<00:04, 7.86it/s]\n 32%|███▏ | 16/50 [00:02<00:04, 8.03it/s]\n 34%|███▍ | 17/50 [00:02<00:04, 8.18it/s]\n 36%|███▌ | 18/50 [00:02<00:03, 8.30it/s]\n 38%|███▊ | 19/50 [00:02<00:03, 8.30it/s]\n 40%|████ | 20/50 [00:02<00:03, 8.34it/s]\n 42%|████▏ | 21/50 [00:02<00:03, 8.42it/s]\n 44%|████▍ | 22/50 [00:02<00:03, 8.47it/s]\n 46%|████▌ | 23/50 [00:02<00:03, 8.26it/s]\n 48%|████▊ | 24/50 [00:03<00:03, 8.31it/s]\n 50%|█████ | 25/50 [00:03<00:02, 8.39it/s]\n 52%|█████▏ | 26/50 [00:03<00:02, 8.45it/s]\n 54%|█████▍ | 27/50 [00:03<00:02, 8.48it/s]\n 56%|█████▌ | 28/50 [00:03<00:02, 8.51it/s]\n 58%|█████▊ | 29/50 [00:03<00:02, 8.53it/s]\n 60%|██████ | 30/50 [00:03<00:02, 8.55it/s]\n 62%|██████▏ | 31/50 [00:03<00:02, 8.56it/s]\n 64%|██████▍ | 32/50 [00:04<00:02, 8.52it/s]\n 66%|██████▌ | 33/50 [00:04<00:01, 8.54it/s]\n 68%|██████▊ | 34/50 [00:04<00:01, 8.56it/s]\n 70%|███████ | 35/50 [00:04<00:01, 8.57it/s]\n 72%|███████▏ | 36/50 [00:04<00:01, 8.58it/s]\n 74%|███████▍ | 37/50 [00:04<00:01, 8.54it/s]\n 76%|███████▌ | 38/50 [00:04<00:01, 8.38it/s]\n 78%|███████▊ | 39/50 [00:04<00:01, 8.27it/s]\n 80%|████████ | 40/50 [00:04<00:01, 8.14it/s]\n 82%|████████▏ | 41/50 [00:05<00:01, 8.27it/s]\n 84%|████████▍ | 42/50 [00:05<00:00, 8.37it/s]\n 86%|████████▌ | 43/50 [00:05<00:00, 8.37it/s]\n 88%|████████▊ | 44/50 [00:05<00:00, 8.43it/s]\n 90%|█████████ | 45/50 [00:05<00:00, 8.48it/s]\n 92%|█████████▏| 46/50 [00:05<00:00, 8.52it/s]\n 94%|█████████▍| 47/50 [00:05<00:00, 8.54it/s]\n 96%|█████████▌| 48/50 [00:05<00:00, 8.56it/s]\n 98%|█████████▊| 49/50 [00:06<00:00, 8.13it/s]\n100%|██████████| 50/50 [00:06<00:00, 8.26it/s]\n100%|██████████| 50/50 [00:06<00:00, 8.12it/s]",
"metrics": {
"predict_time": 15.113188,
"total_time": 15.082411
},
"output": [
"https://replicate.delivery/pbxt/nuOfFs3YzoWbAavGUQ4kB1m50hvGuXplffehCLuKY5djLobGB/out-0.png"
],
"started_at": "2023-09-22T19:44:41.970285Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/pnrolmzbk5ldbbj5vssu2e3tky",
"cancel": "https://api.replicate.com/v1/predictions/pnrolmzbk5ldbbj5vssu2e3tky/cancel"
},
"version": "cacd901fa63f464ab00d47dcca090658defb4d3d75ff047f564151f854d23764"
}
Using seed: 22956
Loading sdxl pipeline...
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
Loading pipeline components...: 14%|█▍ | 1/7 [00:00<00:01, 4.77it/s]
Loading pipeline components...: 43%|████▎ | 3/7 [00:00<00:00, 6.68it/s]
Loading pipeline components...: 71%|███████▏ | 5/7 [00:00<00:00, 9.09it/s]
Loading pipeline components...: 86%|████████▌ | 6/7 [00:01<00:00, 4.32it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 1.50it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 2.36it/s]
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:07, 6.92it/s]
4%|▍ | 2/50 [00:00<00:06, 7.68it/s]
6%|▌ | 3/50 [00:00<00:06, 7.44it/s]
8%|▊ | 4/50 [00:00<00:06, 7.22it/s]
10%|█ | 5/50 [00:00<00:06, 7.13it/s]
12%|█▏ | 6/50 [00:00<00:06, 6.95it/s]
14%|█▍ | 7/50 [00:00<00:06, 7.14it/s]
16%|█▌ | 8/50 [00:01<00:05, 7.48it/s]
18%|█▊ | 9/50 [00:01<00:05, 7.58it/s]
20%|██ | 10/50 [00:01<00:05, 7.53it/s]
22%|██▏ | 11/50 [00:01<00:05, 7.44it/s]
24%|██▍ | 12/50 [00:01<00:05, 7.39it/s]
26%|██▌ | 13/50 [00:01<00:04, 7.49it/s]
28%|██▊ | 14/50 [00:01<00:04, 7.73it/s]
30%|███ | 15/50 [00:02<00:04, 7.86it/s]
32%|███▏ | 16/50 [00:02<00:04, 8.03it/s]
34%|███▍ | 17/50 [00:02<00:04, 8.18it/s]
36%|███▌ | 18/50 [00:02<00:03, 8.30it/s]
38%|███▊ | 19/50 [00:02<00:03, 8.30it/s]
40%|████ | 20/50 [00:02<00:03, 8.34it/s]
42%|████▏ | 21/50 [00:02<00:03, 8.42it/s]
44%|████▍ | 22/50 [00:02<00:03, 8.47it/s]
46%|████▌ | 23/50 [00:02<00:03, 8.26it/s]
48%|████▊ | 24/50 [00:03<00:03, 8.31it/s]
50%|█████ | 25/50 [00:03<00:02, 8.39it/s]
52%|█████▏ | 26/50 [00:03<00:02, 8.45it/s]
54%|█████▍ | 27/50 [00:03<00:02, 8.48it/s]
56%|█████▌ | 28/50 [00:03<00:02, 8.51it/s]
58%|█████▊ | 29/50 [00:03<00:02, 8.53it/s]
60%|██████ | 30/50 [00:03<00:02, 8.55it/s]
62%|██████▏ | 31/50 [00:03<00:02, 8.56it/s]
64%|██████▍ | 32/50 [00:04<00:02, 8.52it/s]
66%|██████▌ | 33/50 [00:04<00:01, 8.54it/s]
68%|██████▊ | 34/50 [00:04<00:01, 8.56it/s]
70%|███████ | 35/50 [00:04<00:01, 8.57it/s]
72%|███████▏ | 36/50 [00:04<00:01, 8.58it/s]
74%|███████▍ | 37/50 [00:04<00:01, 8.54it/s]
76%|███████▌ | 38/50 [00:04<00:01, 8.38it/s]
78%|███████▊ | 39/50 [00:04<00:01, 8.27it/s]
80%|████████ | 40/50 [00:04<00:01, 8.14it/s]
82%|████████▏ | 41/50 [00:05<00:01, 8.27it/s]
84%|████████▍ | 42/50 [00:05<00:00, 8.37it/s]
86%|████████▌ | 43/50 [00:05<00:00, 8.37it/s]
88%|████████▊ | 44/50 [00:05<00:00, 8.43it/s]
90%|█████████ | 45/50 [00:05<00:00, 8.48it/s]
92%|█████████▏| 46/50 [00:05<00:00, 8.52it/s]
94%|█████████▍| 47/50 [00:05<00:00, 8.54it/s]
96%|█████████▌| 48/50 [00:05<00:00, 8.56it/s]
98%|█████████▊| 49/50 [00:06<00:00, 8.13it/s]
100%|██████████| 50/50 [00:06<00:00, 8.26it/s]
100%|██████████| 50/50 [00:06<00:00, 8.12it/s]
This output was created using a different version of the model, alexgenovese/test-endpoint:cacd901f.
This model costs approximately $0.016 to run on Replicate, or 62 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia A100 (80GB) GPU hardware. Predictions typically complete within 12 seconds.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.016 to run on Replicate, but this varies depending on your inputs. View more.
Using seed: 22956
Loading sdxl pipeline...
Loading pipeline components...: 0%| | 0/7 [00:00<?, ?it/s]
Loading pipeline components...: 14%|█▍ | 1/7 [00:00<00:01, 4.77it/s]
Loading pipeline components...: 43%|████▎ | 3/7 [00:00<00:00, 6.68it/s]
Loading pipeline components...: 71%|███████▏ | 5/7 [00:00<00:00, 9.09it/s]
Loading pipeline components...: 86%|████████▌ | 6/7 [00:01<00:00, 4.32it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 1.50it/s]
Loading pipeline components...: 100%|██████████| 7/7 [00:02<00:00, 2.36it/s]
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:07, 6.92it/s]
4%|▍ | 2/50 [00:00<00:06, 7.68it/s]
6%|▌ | 3/50 [00:00<00:06, 7.44it/s]
8%|▊ | 4/50 [00:00<00:06, 7.22it/s]
10%|█ | 5/50 [00:00<00:06, 7.13it/s]
12%|█▏ | 6/50 [00:00<00:06, 6.95it/s]
14%|█▍ | 7/50 [00:00<00:06, 7.14it/s]
16%|█▌ | 8/50 [00:01<00:05, 7.48it/s]
18%|█▊ | 9/50 [00:01<00:05, 7.58it/s]
20%|██ | 10/50 [00:01<00:05, 7.53it/s]
22%|██▏ | 11/50 [00:01<00:05, 7.44it/s]
24%|██▍ | 12/50 [00:01<00:05, 7.39it/s]
26%|██▌ | 13/50 [00:01<00:04, 7.49it/s]
28%|██▊ | 14/50 [00:01<00:04, 7.73it/s]
30%|███ | 15/50 [00:02<00:04, 7.86it/s]
32%|███▏ | 16/50 [00:02<00:04, 8.03it/s]
34%|███▍ | 17/50 [00:02<00:04, 8.18it/s]
36%|███▌ | 18/50 [00:02<00:03, 8.30it/s]
38%|███▊ | 19/50 [00:02<00:03, 8.30it/s]
40%|████ | 20/50 [00:02<00:03, 8.34it/s]
42%|████▏ | 21/50 [00:02<00:03, 8.42it/s]
44%|████▍ | 22/50 [00:02<00:03, 8.47it/s]
46%|████▌ | 23/50 [00:02<00:03, 8.26it/s]
48%|████▊ | 24/50 [00:03<00:03, 8.31it/s]
50%|█████ | 25/50 [00:03<00:02, 8.39it/s]
52%|█████▏ | 26/50 [00:03<00:02, 8.45it/s]
54%|█████▍ | 27/50 [00:03<00:02, 8.48it/s]
56%|█████▌ | 28/50 [00:03<00:02, 8.51it/s]
58%|█████▊ | 29/50 [00:03<00:02, 8.53it/s]
60%|██████ | 30/50 [00:03<00:02, 8.55it/s]
62%|██████▏ | 31/50 [00:03<00:02, 8.56it/s]
64%|██████▍ | 32/50 [00:04<00:02, 8.52it/s]
66%|██████▌ | 33/50 [00:04<00:01, 8.54it/s]
68%|██████▊ | 34/50 [00:04<00:01, 8.56it/s]
70%|███████ | 35/50 [00:04<00:01, 8.57it/s]
72%|███████▏ | 36/50 [00:04<00:01, 8.58it/s]
74%|███████▍ | 37/50 [00:04<00:01, 8.54it/s]
76%|███████▌ | 38/50 [00:04<00:01, 8.38it/s]
78%|███████▊ | 39/50 [00:04<00:01, 8.27it/s]
80%|████████ | 40/50 [00:04<00:01, 8.14it/s]
82%|████████▏ | 41/50 [00:05<00:01, 8.27it/s]
84%|████████▍ | 42/50 [00:05<00:00, 8.37it/s]
86%|████████▌ | 43/50 [00:05<00:00, 8.37it/s]
88%|████████▊ | 44/50 [00:05<00:00, 8.43it/s]
90%|█████████ | 45/50 [00:05<00:00, 8.48it/s]
92%|█████████▏| 46/50 [00:05<00:00, 8.52it/s]
94%|█████████▍| 47/50 [00:05<00:00, 8.54it/s]
96%|█████████▌| 48/50 [00:05<00:00, 8.56it/s]
98%|█████████▊| 49/50 [00:06<00:00, 8.13it/s]
100%|██████████| 50/50 [00:06<00:00, 8.26it/s]
100%|██████████| 50/50 [00:06<00:00, 8.12it/s]