You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run asronline/mk1-redux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"asronline/mk1-redux:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753",
{
input: {
width: 1024,
height: 1024,
prompt: "In the style of MK1, batman as a ninja, fighting stance",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run asronline/mk1-redux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"asronline/mk1-redux:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753",
input={
"width": 1024,
"height": 1024,
"prompt": "In the style of MK1, batman as a ninja, fighting stance",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run asronline/mk1-redux using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753",
"input": {
"width": 1024,
"height": 1024,
"prompt": "In the style of MK1, batman as a ninja, fighting stance",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/asronline/mk1-redux@sha256:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="In the style of MK1, batman as a ninja, fighting stance"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/asronline/mk1-redux@sha256:cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "In the style of MK1, batman as a ninja, fighting stance", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.015. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-02T22:22:44.221331Z",
"created_at": "2023-09-02T22:22:28.488960Z",
"data_removed": false,
"error": null,
"id": "bbgssvdbhedadm7nynztrtfexu",
"input": {
"width": 1024,
"height": 1024,
"prompt": "In the style of MK1, batman as a ninja, fighting stance",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 17191\nPrompt: In the style of MK1, batman as a ninja, fighting stance\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.67it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.66it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.66it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.66it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.66it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.66it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]\n 20%|██ | 10/50 [00:02<00:10, 3.66it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.66it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.66it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.65it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.65it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.65it/s]\n 42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.64it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.64it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.64it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.64it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]\n 80%|████████ | 40/50 [00:10<00:02, 3.64it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.63it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.64it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.65it/s]",
"metrics": {
"predict_time": 15.752987,
"total_time": 15.732371
},
"output": [
"https://pbxt.replicate.delivery/6q0Hke8T4etY6UahtfLrZGUfzHhLWFtNYsf1PC2fJOY5snFYE/out-0.png"
],
"started_at": "2023-09-02T22:22:28.468344Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/bbgssvdbhedadm7nynztrtfexu",
"cancel": "https://api.replicate.com/v1/predictions/bbgssvdbhedadm7nynztrtfexu/cancel"
},
"version": "cbd37c5619e00c2110a01b1c9d0610ccf8ebfa67912d858aa1d8753994794753"
}
Using seed: 17191
Prompt: In the style of MK1, batman as a ninja, fighting stance
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.67it/s]
4%|▍ | 2/50 [00:00<00:13, 3.66it/s]
6%|▌ | 3/50 [00:00<00:12, 3.66it/s]
8%|▊ | 4/50 [00:01<00:12, 3.66it/s]
10%|█ | 5/50 [00:01<00:12, 3.66it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.66it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.66it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.66it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.66it/s]
20%|██ | 10/50 [00:02<00:10, 3.66it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.66it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.66it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.66it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.65it/s]
30%|███ | 15/50 [00:04<00:09, 3.65it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.65it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.65it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.65it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.65it/s]
40%|████ | 20/50 [00:05<00:08, 3.65it/s]
42%|████▏ | 21/50 [00:05<00:07, 3.65it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.64it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.64it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.64it/s]
50%|█████ | 25/50 [00:06<00:06, 3.64it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.64it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.64it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.64it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.64it/s]
60%|██████ | 30/50 [00:08<00:05, 3.64it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.64it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.64it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.64it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.64it/s]
70%|███████ | 35/50 [00:09<00:04, 3.64it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.64it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.64it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.64it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.64it/s]
80%|████████ | 40/50 [00:10<00:02, 3.64it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.64it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.64it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.64it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.64it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.64it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.64it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.63it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.64it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.64it/s]
100%|██████████| 50/50 [00:13<00:00, 3.65it/s]