You're looking at a specific version of this model. Jump to the model overview.
camenduru /visual-style-prompting-controlnet:bfd1dedb
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run camenduru/visual-style-prompting-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"camenduru/visual-style-prompting-controlnet:bfd1dedbb46545a191b3a42b5f3778d6c97fa6b6c0283de7d099403c05560b65",
{
input: {
prompt: "",
style_name: "fire",
depth_image: "https://replicate.delivery/pbxt/KZccXvxIrAPKRoK2ptD9etXWNi7MBqEJwiq0Q8vq6J5lpei4/gundam.png",
style_image: "https://replicate.delivery/pbxt/KZccYM9O5deD8ojgR7f0jQct4suKTXCo6Xqomx4f5qxFqoac/ref_fire_fire.png",
diffusion_steps: 50,
controlnet_scale: 0.5
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run camenduru/visual-style-prompting-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"camenduru/visual-style-prompting-controlnet:bfd1dedbb46545a191b3a42b5f3778d6c97fa6b6c0283de7d099403c05560b65",
input={
"prompt": "",
"style_name": "fire",
"depth_image": "https://replicate.delivery/pbxt/KZccXvxIrAPKRoK2ptD9etXWNi7MBqEJwiq0Q8vq6J5lpei4/gundam.png",
"style_image": "https://replicate.delivery/pbxt/KZccYM9O5deD8ojgR7f0jQct4suKTXCo6Xqomx4f5qxFqoac/ref_fire_fire.png",
"diffusion_steps": 50,
"controlnet_scale": 0.5
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run camenduru/visual-style-prompting-controlnet using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "camenduru/visual-style-prompting-controlnet:bfd1dedbb46545a191b3a42b5f3778d6c97fa6b6c0283de7d099403c05560b65",
"input": {
"prompt": "",
"style_name": "fire",
"depth_image": "https://replicate.delivery/pbxt/KZccXvxIrAPKRoK2ptD9etXWNi7MBqEJwiq0Q8vq6J5lpei4/gundam.png",
"style_image": "https://replicate.delivery/pbxt/KZccYM9O5deD8ojgR7f0jQct4suKTXCo6Xqomx4f5qxFqoac/ref_fire_fire.png",
"diffusion_steps": 50,
"controlnet_scale": 0.5
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/camenduru/visual-style-prompting-controlnet@sha256:bfd1dedbb46545a191b3a42b5f3778d6c97fa6b6c0283de7d099403c05560b65 \
-i 'prompt=""' \
-i 'style_name="fire"' \
-i 'depth_image="https://replicate.delivery/pbxt/KZccXvxIrAPKRoK2ptD9etXWNi7MBqEJwiq0Q8vq6J5lpei4/gundam.png"' \
-i 'style_image="https://replicate.delivery/pbxt/KZccYM9O5deD8ojgR7f0jQct4suKTXCo6Xqomx4f5qxFqoac/ref_fire_fire.png"' \
-i 'diffusion_steps=50' \
-i 'controlnet_scale=0.5'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 r8.im/camenduru/visual-style-prompting-controlnet@sha256:bfd1dedbb46545a191b3a42b5f3778d6c97fa6b6c0283de7d099403c05560b65
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "prompt": "", "style_name": "fire", "depth_image": "https://replicate.delivery/pbxt/KZccXvxIrAPKRoK2ptD9etXWNi7MBqEJwiq0Q8vq6J5lpei4/gundam.png", "style_image": "https://replicate.delivery/pbxt/KZccYM9O5deD8ojgR7f0jQct4suKTXCo6Xqomx4f5qxFqoac/ref_fire_fire.png", "diffusion_steps": 50, "controlnet_scale": 0.5 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-03-15T11:09:36.469647Z",
"created_at": "2024-03-15T11:04:42.611455Z",
"data_removed": false,
"error": null,
"id": "xwdipjzbfqyqggd5673qp2v6qy",
"input": {
"prompt": "",
"style_name": "fire",
"depth_image": "https://replicate.delivery/pbxt/KZccXvxIrAPKRoK2ptD9etXWNi7MBqEJwiq0Q8vq6J5lpei4/gundam.png",
"style_image": "https://replicate.delivery/pbxt/KZccYM9O5deD8ojgR7f0jQct4suKTXCo6Xqomx4f5qxFqoac/ref_fire_fire.png",
"diffusion_steps": 50,
"controlnet_scale": 0.5
},
"logs": "0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:02<02:18, 2.82s/it]\n 4%|▍ | 2/50 [00:03<01:05, 1.37s/it]\n 6%|▌ | 3/50 [00:03<00:43, 1.09it/s]\n 8%|▊ | 4/50 [00:03<00:32, 1.42it/s]\n 10%|█ | 5/50 [00:04<00:26, 1.71it/s]\n 12%|█▏ | 6/50 [00:04<00:22, 1.94it/s]\n 14%|█▍ | 7/50 [00:05<00:20, 2.13it/s]\n 16%|█▌ | 8/50 [00:05<00:18, 2.27it/s]\n 18%|█▊ | 9/50 [00:05<00:17, 2.38it/s]\n 20%|██ | 10/50 [00:06<00:16, 2.46it/s]\n 22%|██▏ | 11/50 [00:06<00:15, 2.51it/s]\n 24%|██▍ | 12/50 [00:06<00:14, 2.55it/s]\n 26%|██▌ | 13/50 [00:07<00:14, 2.58it/s]\n 28%|██▊ | 14/50 [00:07<00:13, 2.60it/s]\n 30%|███ | 15/50 [00:08<00:13, 2.61it/s]\n 32%|███▏ | 16/50 [00:08<00:12, 2.62it/s]\n 34%|███▍ | 17/50 [00:08<00:12, 2.59it/s]\n 36%|███▌ | 18/50 [00:09<00:12, 2.61it/s]\n 38%|███▊ | 19/50 [00:09<00:11, 2.62it/s]\n 40%|████ | 20/50 [00:09<00:11, 2.63it/s]\n 42%|████▏ | 21/50 [00:10<00:11, 2.63it/s]\n 44%|████▍ | 22/50 [00:10<00:10, 2.61it/s]\n 46%|████▌ | 23/50 [00:11<00:10, 2.46it/s]\n 48%|████▊ | 24/50 [00:11<00:10, 2.52it/s]\n 50%|█████ | 25/50 [00:11<00:09, 2.55it/s]\n 52%|█████▏ | 26/50 [00:12<00:09, 2.58it/s]\n 54%|█████▍ | 27/50 [00:12<00:08, 2.60it/s]\n 56%|█████▌ | 28/50 [00:13<00:08, 2.61it/s]\n 58%|█████▊ | 29/50 [00:13<00:08, 2.62it/s]\n 60%|██████ | 30/50 [00:13<00:07, 2.62it/s]\n 62%|██████▏ | 31/50 [00:14<00:07, 2.63it/s]\n 64%|██████▍ | 32/50 [00:14<00:06, 2.63it/s]\n 66%|██████▌ | 33/50 [00:15<00:06, 2.62it/s]\n 68%|██████▊ | 34/50 [00:15<00:06, 2.63it/s]\n 70%|███████ | 35/50 [00:15<00:05, 2.63it/s]\n 72%|███████▏ | 36/50 [00:16<00:05, 2.62it/s]\n 74%|███████▍ | 37/50 [00:16<00:05, 2.53it/s]\n 76%|███████▌ | 38/50 [00:16<00:04, 2.52it/s]\n 78%|███████▊ | 39/50 [00:17<00:04, 2.56it/s]\n 80%|████████ | 40/50 [00:17<00:03, 2.58it/s]\n 82%|████████▏ | 41/50 [00:18<00:03, 2.59it/s]\n 84%|████████▍ | 42/50 [00:18<00:03, 2.61it/s]\n 86%|████████▌ | 43/50 [00:18<00:02, 2.61it/s]\n 88%|████████▊ | 44/50 [00:19<00:02, 2.62it/s]\n 90%|█████████ | 45/50 [00:19<00:01, 2.62it/s]\n 92%|█████████▏| 46/50 [00:20<00:01, 2.63it/s]\n 94%|█████████▍| 47/50 [00:20<00:01, 2.63it/s]\n 96%|█████████▌| 48/50 [00:20<00:00, 2.63it/s]\n 98%|█████████▊| 49/50 [00:21<00:00, 2.61it/s]\n100%|██████████| 50/50 [00:21<00:00, 2.62it/s]\n100%|██████████| 50/50 [00:21<00:00, 2.32it/s]",
"metrics": {
"predict_time": 30.800651,
"total_time": 293.858192
},
"output": "https://replicate.delivery/pbxt/eehLBvNw7WsyU0NNkCZ6ULlffufnTfvyctI2HUyF6K0MceOQJA/output_image.png",
"started_at": "2024-03-15T11:09:05.668996Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/xwdipjzbfqyqggd5673qp2v6qy",
"cancel": "https://api.replicate.com/v1/predictions/xwdipjzbfqyqggd5673qp2v6qy/cancel"
},
"version": "bfd1dedbb46545a191b3a42b5f3778d6c97fa6b6c0283de7d099403c05560b65"
}
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:02<02:18, 2.82s/it]
4%|▍ | 2/50 [00:03<01:05, 1.37s/it]
6%|▌ | 3/50 [00:03<00:43, 1.09it/s]
8%|▊ | 4/50 [00:03<00:32, 1.42it/s]
10%|█ | 5/50 [00:04<00:26, 1.71it/s]
12%|█▏ | 6/50 [00:04<00:22, 1.94it/s]
14%|█▍ | 7/50 [00:05<00:20, 2.13it/s]
16%|█▌ | 8/50 [00:05<00:18, 2.27it/s]
18%|█▊ | 9/50 [00:05<00:17, 2.38it/s]
20%|██ | 10/50 [00:06<00:16, 2.46it/s]
22%|██▏ | 11/50 [00:06<00:15, 2.51it/s]
24%|██▍ | 12/50 [00:06<00:14, 2.55it/s]
26%|██▌ | 13/50 [00:07<00:14, 2.58it/s]
28%|██▊ | 14/50 [00:07<00:13, 2.60it/s]
30%|███ | 15/50 [00:08<00:13, 2.61it/s]
32%|███▏ | 16/50 [00:08<00:12, 2.62it/s]
34%|███▍ | 17/50 [00:08<00:12, 2.59it/s]
36%|███▌ | 18/50 [00:09<00:12, 2.61it/s]
38%|███▊ | 19/50 [00:09<00:11, 2.62it/s]
40%|████ | 20/50 [00:09<00:11, 2.63it/s]
42%|████▏ | 21/50 [00:10<00:11, 2.63it/s]
44%|████▍ | 22/50 [00:10<00:10, 2.61it/s]
46%|████▌ | 23/50 [00:11<00:10, 2.46it/s]
48%|████▊ | 24/50 [00:11<00:10, 2.52it/s]
50%|█████ | 25/50 [00:11<00:09, 2.55it/s]
52%|█████▏ | 26/50 [00:12<00:09, 2.58it/s]
54%|█████▍ | 27/50 [00:12<00:08, 2.60it/s]
56%|█████▌ | 28/50 [00:13<00:08, 2.61it/s]
58%|█████▊ | 29/50 [00:13<00:08, 2.62it/s]
60%|██████ | 30/50 [00:13<00:07, 2.62it/s]
62%|██████▏ | 31/50 [00:14<00:07, 2.63it/s]
64%|██████▍ | 32/50 [00:14<00:06, 2.63it/s]
66%|██████▌ | 33/50 [00:15<00:06, 2.62it/s]
68%|██████▊ | 34/50 [00:15<00:06, 2.63it/s]
70%|███████ | 35/50 [00:15<00:05, 2.63it/s]
72%|███████▏ | 36/50 [00:16<00:05, 2.62it/s]
74%|███████▍ | 37/50 [00:16<00:05, 2.53it/s]
76%|███████▌ | 38/50 [00:16<00:04, 2.52it/s]
78%|███████▊ | 39/50 [00:17<00:04, 2.56it/s]
80%|████████ | 40/50 [00:17<00:03, 2.58it/s]
82%|████████▏ | 41/50 [00:18<00:03, 2.59it/s]
84%|████████▍ | 42/50 [00:18<00:03, 2.61it/s]
86%|████████▌ | 43/50 [00:18<00:02, 2.61it/s]
88%|████████▊ | 44/50 [00:19<00:02, 2.62it/s]
90%|█████████ | 45/50 [00:19<00:01, 2.62it/s]
92%|█████████▏| 46/50 [00:20<00:01, 2.63it/s]
94%|█████████▍| 47/50 [00:20<00:01, 2.63it/s]
96%|█████████▌| 48/50 [00:20<00:00, 2.63it/s]
98%|█████████▊| 49/50 [00:21<00:00, 2.61it/s]
100%|██████████| 50/50 [00:21<00:00, 2.62it/s]
100%|██████████| 50/50 [00:21<00:00, 2.32it/s]