ali-vilab / i2vgen-xl
RESEARCH/NON-COMMERCIAL USE ONLY: High-Quality Image-to-Video Synthesis via Cascaded Diffusion Models
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDsbwnhhrb3ihbvriz6jouig5waiStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- prompt
- Several statues made of porcelain chunks and gold mendings, the face of the statues have lips and eyes, the eyes are blinking, the lips are opening like the statues are talking, the head of the statues are turning towards the camera
- max_frames
- 16
- guidance_scale
- 9
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/KAaJWyluKBrWzbe5EhQArYZcVXdpOvcLyF81menWifyusgCe/1.jpeg", "prompt": "Several statues made of porcelain chunks and gold mendings, the face of the statues have lips and eyes, the eyes are blinking, the lips are opening like the statues are talking, the head of the statues are turning towards the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAaJWyluKBrWzbe5EhQArYZcVXdpOvcLyF81menWifyusgCe/1.jpeg", prompt: "Several statues made of porcelain chunks and gold mendings, the face of the statues have lips and eyes, the eyes are blinking, the lips are opening like the statues are talking, the head of the statues are turning towards the camera", max_frames: 16, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAaJWyluKBrWzbe5EhQArYZcVXdpOvcLyF81menWifyusgCe/1.jpeg", "prompt": "Several statues made of porcelain chunks and gold mendings, the face of the statues have lips and eyes, the eyes are blinking, the lips are opening like the statues are talking, the head of the statues are turning towards the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAaJWyluKBrWzbe5EhQArYZcVXdpOvcLyF81menWifyusgCe/1.jpeg", "prompt": "Several statues made of porcelain chunks and gold mendings, the face of the statues have lips and eyes, the eyes are blinking, the lips are opening like the statues are talking, the head of the statues are turning towards the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T21:58:01.658644Z", "created_at": "2024-01-04T21:56:00.305829Z", "data_removed": false, "error": null, "id": "sbwnhhrb3ihbvriz6jouig5wai", "input": { "image": "https://replicate.delivery/pbxt/KAaJWyluKBrWzbe5EhQArYZcVXdpOvcLyF81menWifyusgCe/1.jpeg", "prompt": "Several statues made of porcelain chunks and gold mendings, the face of the statues have lips and eyes, the eyes are blinking, the lips are opening like the statues are talking, the head of the statues are turning towards the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 31426\nGPU Memory used 30.41 GB", "metrics": { "predict_time": 116.043073, "total_time": 121.352815 }, "output": "https://replicate.delivery/pbxt/qtcUTHn7RhbJDhpyD3hjyidUg6cgTDdhjgTwDcXkpgI6bTiE/out.mp4", "started_at": "2024-01-04T21:56:05.615571Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/sbwnhhrb3ihbvriz6jouig5wai", "cancel": "https://api.replicate.com/v1/predictions/sbwnhhrb3ihbvriz6jouig5wai/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 31426 GPU Memory used 30.41 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4ID7nmo2lrb6jtysf7hozhcw5ayqaStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/KA6KcZp2UhselAqryBuWaIV2w3KPKYJpVM9cQtqSctlhwdK5/img_0002.png", "prompt": "A blonde girl in jeans", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KA6KcZp2UhselAqryBuWaIV2w3KPKYJpVM9cQtqSctlhwdK5/img_0002.png", prompt: "A blonde girl in jeans", max_frames: 16, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KA6KcZp2UhselAqryBuWaIV2w3KPKYJpVM9cQtqSctlhwdK5/img_0002.png", "prompt": "A blonde girl in jeans", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KA6KcZp2UhselAqryBuWaIV2w3KPKYJpVM9cQtqSctlhwdK5/img_0002.png", "prompt": "A blonde girl in jeans", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:09:41.707229Z", "created_at": "2024-01-04T22:07:45.891880Z", "data_removed": false, "error": null, "id": "7nmo2lrb6jtysf7hozhcw5ayqa", "input": { "image": "https://replicate.delivery/pbxt/KA6KcZp2UhselAqryBuWaIV2w3KPKYJpVM9cQtqSctlhwdK5/img_0002.png", "prompt": "A blonde girl in jeans", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 25382\nGPU Memory used 36.12 GB", "metrics": { "predict_time": 115.80122, "total_time": 115.815349 }, "output": "https://replicate.delivery/pbxt/8FpYFhLD6XKYIpivyRjI3LHHhV4C1kAVsGZSP4f2f4Uk6NJSA/out.mp4", "started_at": "2024-01-04T22:07:45.906009Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/7nmo2lrb6jtysf7hozhcw5ayqa", "cancel": "https://api.replicate.com/v1/predictions/7nmo2lrb6jtysf7hozhcw5ayqa/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 25382 GPU Memory used 36.12 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4ID2m3npajb3lzubejsnd46tfql6yStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- prompt
- A girl with yellow hair and black clothes stood in front of the camera
- max_frames
- 16
- guidance_scale
- 9
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/KAaakS0H8XnzXtfFCWvqUBjC759vUXdJ18Y5JgfeGFA2PTie/img_0004.png", "prompt": "A girl with yellow hair and black clothes stood in front of the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAaakS0H8XnzXtfFCWvqUBjC759vUXdJ18Y5JgfeGFA2PTie/img_0004.png", prompt: "A girl with yellow hair and black clothes stood in front of the camera", max_frames: 16, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAaakS0H8XnzXtfFCWvqUBjC759vUXdJ18Y5JgfeGFA2PTie/img_0004.png", "prompt": "A girl with yellow hair and black clothes stood in front of the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAaakS0H8XnzXtfFCWvqUBjC759vUXdJ18Y5JgfeGFA2PTie/img_0004.png", "prompt": "A girl with yellow hair and black clothes stood in front of the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:18:53.491057Z", "created_at": "2024-01-04T22:14:10.529476Z", "data_removed": false, "error": null, "id": "2m3npajb3lzubejsnd46tfql6y", "input": { "image": "https://replicate.delivery/pbxt/KAaakS0H8XnzXtfFCWvqUBjC759vUXdJ18Y5JgfeGFA2PTie/img_0004.png", "prompt": "A girl with yellow hair and black clothes stood in front of the camera", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 58775\nGPU Memory used 36.12 GB", "metrics": { "predict_time": 115.970893, "total_time": 282.961581 }, "output": "https://replicate.delivery/pbxt/uagzCbHvxwJzIFQMsuFfF9XmXUgTVlI9ySTgouFLICJmBnEJA/out.mp4", "started_at": "2024-01-04T22:16:57.520164Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/2m3npajb3lzubejsnd46tfql6y", "cancel": "https://api.replicate.com/v1/predictions/2m3npajb3lzubejsnd46tfql6y/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 58775 GPU Memory used 36.12 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDnfxtm5bbxwwpu26nnthp6mfgqmStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/KAadCEQoo11IDW10ct9QrGEdi2CuAvfY9GgwTu6VCdd2ERNd/a.webp", "prompt": "A bustling space habitat", "max_frames": 32, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAadCEQoo11IDW10ct9QrGEdi2CuAvfY9GgwTu6VCdd2ERNd/a.webp", prompt: "A bustling space habitat", max_frames: 32, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAadCEQoo11IDW10ct9QrGEdi2CuAvfY9GgwTu6VCdd2ERNd/a.webp", "prompt": "A bustling space habitat", "max_frames": 32, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAadCEQoo11IDW10ct9QrGEdi2CuAvfY9GgwTu6VCdd2ERNd/a.webp", "prompt": "A bustling space habitat", "max_frames": 32, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:20:55.694458Z", "created_at": "2024-01-04T22:16:46.156996Z", "data_removed": false, "error": null, "id": "nfxtm5bbxwwpu26nnthp6mfgqm", "input": { "image": "https://replicate.delivery/pbxt/KAadCEQoo11IDW10ct9QrGEdi2CuAvfY9GgwTu6VCdd2ERNd/a.webp", "prompt": "A bustling space habitat", "max_frames": 32, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 1225\nGPU Memory used 16.13 GB", "metrics": { "predict_time": 233.999309, "total_time": 249.537462 }, "output": "https://replicate.delivery/pbxt/u6P5IrDM3xqBPBUdwDaCFP9ClOR9uJhU7CuYwCm5UfJjCnEJA/out.mp4", "started_at": "2024-01-04T22:17:01.695149Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nfxtm5bbxwwpu26nnthp6mfgqm", "cancel": "https://api.replicate.com/v1/predictions/nfxtm5bbxwwpu26nnthp6mfgqm/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 1225 GPU Memory used 16.13 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDg7cgxfbbs2w7dlxjz6nyovoluuStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- prompt
- a girl standing in a field of wheat under a storm cloud
- max_frames
- 16
- guidance_scale
- 9
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/KAaiN6IY6R62sAwZUI1j20wRrce79ECMpCV8v1jhLqn66pk7/img_0010.png", "prompt": "a girl standing in a field of wheat under a storm cloud", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAaiN6IY6R62sAwZUI1j20wRrce79ECMpCV8v1jhLqn66pk7/img_0010.png", prompt: "a girl standing in a field of wheat under a storm cloud", max_frames: 16, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAaiN6IY6R62sAwZUI1j20wRrce79ECMpCV8v1jhLqn66pk7/img_0010.png", "prompt": "a girl standing in a field of wheat under a storm cloud", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAaiN6IY6R62sAwZUI1j20wRrce79ECMpCV8v1jhLqn66pk7/img_0010.png", "prompt": "a girl standing in a field of wheat under a storm cloud", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:24:24.009550Z", "created_at": "2024-01-04T22:22:13.822653Z", "data_removed": false, "error": null, "id": "g7cgxfbbs2w7dlxjz6nyovoluu", "input": { "image": "https://replicate.delivery/pbxt/KAaiN6IY6R62sAwZUI1j20wRrce79ECMpCV8v1jhLqn66pk7/img_0010.png", "prompt": "a girl standing in a field of wheat under a storm cloud", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 35008\nGPU Memory used 36.93 GB", "metrics": { "predict_time": 116.104819, "total_time": 130.186897 }, "output": "https://replicate.delivery/pbxt/17w7ehiPd0WxbiV9espf5kvreaWlPei4I1DQiRxMtYA4CxJRC/out.mp4", "started_at": "2024-01-04T22:22:27.904731Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/g7cgxfbbs2w7dlxjz6nyovoluu", "cancel": "https://api.replicate.com/v1/predictions/g7cgxfbbs2w7dlxjz6nyovoluu/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 35008 GPU Memory used 36.93 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDqmtrv3rbp7xcqrvsog4zb3uc3eStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- prompt
- a painting of a city street with a giant monster
- max_frames
- 24
- guidance_scale
- 9
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/KAaj7PDEVxENh3Y4O1RYadsRJt3zOWscUiFjYzsFZUrqFKVs/img_0011.png", "prompt": "a painting of a city street with a giant monster", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAaj7PDEVxENh3Y4O1RYadsRJt3zOWscUiFjYzsFZUrqFKVs/img_0011.png", prompt: "a painting of a city street with a giant monster", max_frames: 24, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAaj7PDEVxENh3Y4O1RYadsRJt3zOWscUiFjYzsFZUrqFKVs/img_0011.png", "prompt": "a painting of a city street with a giant monster", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAaj7PDEVxENh3Y4O1RYadsRJt3zOWscUiFjYzsFZUrqFKVs/img_0011.png", "prompt": "a painting of a city street with a giant monster", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:25:54.408775Z", "created_at": "2024-01-04T22:23:01.115498Z", "data_removed": false, "error": null, "id": "qmtrv3rbp7xcqrvsog4zb3uc3e", "input": { "image": "https://replicate.delivery/pbxt/KAaj7PDEVxENh3Y4O1RYadsRJt3zOWscUiFjYzsFZUrqFKVs/img_0011.png", "prompt": "a painting of a city street with a giant monster", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 601\nGPU Memory used 33.90 GB", "metrics": { "predict_time": 173.27841, "total_time": 173.293277 }, "output": "https://replicate.delivery/pbxt/EQYlzgOni5J2B90p7ppQHXNlkOS7Y4m0GpMQyBR4Lrf4EnEJA/out.mp4", "started_at": "2024-01-04T22:23:01.130365Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qmtrv3rbp7xcqrvsog4zb3uc3e", "cancel": "https://api.replicate.com/v1/predictions/qmtrv3rbp7xcqrvsog4zb3uc3e/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 601 GPU Memory used 33.90 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDwc32s5rbb5ec2un3xly3eerulqStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- prompt
- Papers were floating in the air on a table in the library
- max_frames
- 16
- guidance_scale
- 9
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/KAanGj3w6ZzEY8LrpwIEJ5TADtm29iO5a6LJfGolWuouVxaZ/img_0009.png", "prompt": "Papers were floating in the air on a table in the library", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAanGj3w6ZzEY8LrpwIEJ5TADtm29iO5a6LJfGolWuouVxaZ/img_0009.png", prompt: "Papers were floating in the air on a table in the library", max_frames: 16, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAanGj3w6ZzEY8LrpwIEJ5TADtm29iO5a6LJfGolWuouVxaZ/img_0009.png", "prompt": "Papers were floating in the air on a table in the library", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAanGj3w6ZzEY8LrpwIEJ5TADtm29iO5a6LJfGolWuouVxaZ/img_0009.png", "prompt": "Papers were floating in the air on a table in the library", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:29:20.386598Z", "created_at": "2024-01-04T22:27:24.285170Z", "data_removed": false, "error": null, "id": "wc32s5rbb5ec2un3xly3eerulq", "input": { "image": "https://replicate.delivery/pbxt/KAanGj3w6ZzEY8LrpwIEJ5TADtm29iO5a6LJfGolWuouVxaZ/img_0009.png", "prompt": "Papers were floating in the air on a table in the library", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 51265\nGPU Memory used 36.93 GB", "metrics": { "predict_time": 116.087555, "total_time": 116.101428 }, "output": "https://replicate.delivery/pbxt/cIu6jSkFd1IcApptmzpUEH946fevSuoOZdO3oIsyIDhfZcSkA/out.mp4", "started_at": "2024-01-04T22:27:24.299043Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/wc32s5rbb5ec2un3xly3eerulq", "cancel": "https://api.replicate.com/v1/predictions/wc32s5rbb5ec2un3xly3eerulq/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 51265 GPU Memory used 36.93 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDlb63s2zbjcanc7iiubicybgocmStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/KAarl3xLEJdskvaosegmeOt0fKixCbUAJGH9Ls5BllWOo88z/img_0006.png", "prompt": "A red woodcut bird", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAarl3xLEJdskvaosegmeOt0fKixCbUAJGH9Ls5BllWOo88z/img_0006.png", prompt: "A red woodcut bird", max_frames: 24, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAarl3xLEJdskvaosegmeOt0fKixCbUAJGH9Ls5BllWOo88z/img_0006.png", "prompt": "A red woodcut bird", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAarl3xLEJdskvaosegmeOt0fKixCbUAJGH9Ls5BllWOo88z/img_0006.png", "prompt": "A red woodcut bird", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:36:53.720359Z", "created_at": "2024-01-04T22:32:07.534353Z", "data_removed": false, "error": null, "id": "lb63s2zbjcanc7iiubicybgocm", "input": { "image": "https://replicate.delivery/pbxt/KAarl3xLEJdskvaosegmeOt0fKixCbUAJGH9Ls5BllWOo88z/img_0006.png", "prompt": "A red woodcut bird", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 48093\nGPU Memory used 36.93 GB", "metrics": { "predict_time": 168.722363, "total_time": 286.186006 }, "output": "https://replicate.delivery/pbxt/k8snVuprc55lEZbZpBeNwpDLu3miaeLmhzGPz7febe7ngyJRC/out.mp4", "started_at": "2024-01-04T22:34:04.997996Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/lb63s2zbjcanc7iiubicybgocm", "cancel": "https://api.replicate.com/v1/predictions/lb63s2zbjcanc7iiubicybgocm/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 48093 GPU Memory used 36.93 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDxwhu2tzbrekcauusnec5ypicwaStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- prompt
- A green frog floats on the surface of the water on green lotus leaves, with several pink lotus flowers, in a Chinese painting style.
- max_frames
- 16
- guidance_scale
- 9
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/KAaqHGiebUQV40JOi5wcz5DsxSn1Hil78jbA0Tnou6VfFd8t/img_0001.jpg", "prompt": "A green frog floats on the surface of the water on green lotus leaves, with several pink lotus flowers, in a Chinese painting style.", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAaqHGiebUQV40JOi5wcz5DsxSn1Hil78jbA0Tnou6VfFd8t/img_0001.jpg", prompt: "A green frog floats on the surface of the water on green lotus leaves, with several pink lotus flowers, in a Chinese painting style.", max_frames: 16, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAaqHGiebUQV40JOi5wcz5DsxSn1Hil78jbA0Tnou6VfFd8t/img_0001.jpg", "prompt": "A green frog floats on the surface of the water on green lotus leaves, with several pink lotus flowers, in a Chinese painting style.", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAaqHGiebUQV40JOi5wcz5DsxSn1Hil78jbA0Tnou6VfFd8t/img_0001.jpg", "prompt": "A green frog floats on the surface of the water on green lotus leaves, with several pink lotus flowers, in a Chinese painting style.", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:34:04.966955Z", "created_at": "2024-01-04T22:30:34.084687Z", "data_removed": false, "error": null, "id": "xwhu2tzbrekcauusnec5ypicwa", "input": { "image": "https://replicate.delivery/pbxt/KAaqHGiebUQV40JOi5wcz5DsxSn1Hil78jbA0Tnou6VfFd8t/img_0001.jpg", "prompt": "A green frog floats on the surface of the water on green lotus leaves, with several pink lotus flowers, in a Chinese painting style.", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 55651\nGPU Memory used 36.93 GB", "metrics": { "predict_time": 115.917196, "total_time": 210.882268 }, "output": "https://replicate.delivery/pbxt/4ozZ2Cd27A4dHRST3dC2rJa8gjhGzno6synllDiXVeRuInEJA/out.mp4", "started_at": "2024-01-04T22:32:09.049759Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/xwhu2tzbrekcauusnec5ypicwa", "cancel": "https://api.replicate.com/v1/predictions/xwhu2tzbrekcauusnec5ypicwa/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 55651 GPU Memory used 36.93 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDh5nyeorbapvtn2a4mtmlxqluvqStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
- prompt
- Chinese ink painting, two boats and two coconut trees by the sea
- max_frames
- 16
- guidance_scale
- 9
- num_inference_steps
- 50
{ "image": "https://replicate.delivery/pbxt/KAb3JpvqEpXcyd97aKWKiVZcSV4hLZP8raqAplfxmbYAWi94/img_0007.jpg", "prompt": "Chinese ink painting, two boats and two coconut trees by the sea", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAb3JpvqEpXcyd97aKWKiVZcSV4hLZP8raqAplfxmbYAWi94/img_0007.jpg", prompt: "Chinese ink painting, two boats and two coconut trees by the sea", max_frames: 16, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAb3JpvqEpXcyd97aKWKiVZcSV4hLZP8raqAplfxmbYAWi94/img_0007.jpg", "prompt": "Chinese ink painting, two boats and two coconut trees by the sea", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAb3JpvqEpXcyd97aKWKiVZcSV4hLZP8raqAplfxmbYAWi94/img_0007.jpg", "prompt": "Chinese ink painting, two boats and two coconut trees by the sea", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:46:14.958861Z", "created_at": "2024-01-04T22:44:19.377991Z", "data_removed": false, "error": null, "id": "h5nyeorbapvtn2a4mtmlxqluvq", "input": { "image": "https://replicate.delivery/pbxt/KAb3JpvqEpXcyd97aKWKiVZcSV4hLZP8raqAplfxmbYAWi94/img_0007.jpg", "prompt": "Chinese ink painting, two boats and two coconut trees by the sea", "max_frames": 16, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 24820\nGPU Memory used 36.93 GB", "metrics": { "predict_time": 115.566297, "total_time": 115.58087 }, "output": "https://replicate.delivery/pbxt/xLur1grNd5JZDNrocPmpqZcexW1olby5QrFzNg5CoBSbOnEJA/out.mp4", "started_at": "2024-01-04T22:44:19.392564Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/h5nyeorbapvtn2a4mtmlxqluvq", "cancel": "https://api.replicate.com/v1/predictions/h5nyeorbapvtn2a4mtmlxqluvq/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 24820 GPU Memory used 36.93 GB
Prediction
ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4IDs34qjvrbxt6a2hdorscqjbvxdeStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedInput
{ "image": "https://replicate.delivery/pbxt/KAb3LUmkyxE5UXeMXLZpZxFJ32RpKE3eXQpik3g2hUW277Ve/img_0008.png", "prompt": "A dog in a suit and tie faces the camera", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", { input: { image: "https://replicate.delivery/pbxt/KAb3LUmkyxE5UXeMXLZpZxFJ32RpKE3eXQpik3g2hUW277Ve/img_0008.png", prompt: "A dog in a suit and tie faces the camera", max_frames: 24, guidance_scale: 9, num_inference_steps: 50 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", input={ "image": "https://replicate.delivery/pbxt/KAb3LUmkyxE5UXeMXLZpZxFJ32RpKE3eXQpik3g2hUW277Ve/img_0008.png", "prompt": "A dog in a suit and tie faces the camera", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/i2vgen-xl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/i2vgen-xl:5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4", "input": { "image": "https://replicate.delivery/pbxt/KAb3LUmkyxE5UXeMXLZpZxFJ32RpKE3eXQpik3g2hUW277Ve/img_0008.png", "prompt": "A dog in a suit and tie faces the camera", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-04T22:49:03.383234Z", "created_at": "2024-01-04T22:44:21.766282Z", "data_removed": false, "error": null, "id": "s34qjvrbxt6a2hdorscqjbvxde", "input": { "image": "https://replicate.delivery/pbxt/KAb3LUmkyxE5UXeMXLZpZxFJ32RpKE3eXQpik3g2hUW277Ve/img_0008.png", "prompt": "A dog in a suit and tie faces the camera", "max_frames": 24, "guidance_scale": 9, "num_inference_steps": 50 }, "logs": "Using seed: 12488\nGPU Memory used 36.93 GB", "metrics": { "predict_time": 168.388395, "total_time": 281.616952 }, "output": "https://replicate.delivery/pbxt/TOWclQV8cm6PKteOJCL6Zngo2pxbqwmPcCfUquWvnEEee5kIB/out.mp4", "started_at": "2024-01-04T22:46:14.994839Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/s34qjvrbxt6a2hdorscqjbvxde", "cancel": "https://api.replicate.com/v1/predictions/s34qjvrbxt6a2hdorscqjbvxde/cancel" }, "version": "5821a338d00033abaaba89080a17eb8783d9a17ed710a6b4246a18e0900ccad4" }
Generated inUsing seed: 12488 GPU Memory used 36.93 GB
Want to make some of these yourself?
Run this model