You're looking at a specific version of this model. Jump to the model overview.
georgedavila /sdxl-beethoven-spectrograms-lora:193c41ea
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run georgedavila/sdxl-beethoven-spectrograms-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"georgedavila/sdxl-beethoven-spectrograms-lora:193c41eaa2f90912bb886b75950af5d433eb9e6007c17507e5da11e527ad38e5",
{
input: {
myprompt: "A SPECTROGRAM image",
outWidth: 1024,
outHeight: 1024,
lora_scale: 0.6,
num_outputs: 1,
guidanceScale: 7.5,
promptAddendum: "",
high_noise_frac: 0.8,
negative_prompt: "fuzzy, lone pixels",
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run georgedavila/sdxl-beethoven-spectrograms-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"georgedavila/sdxl-beethoven-spectrograms-lora:193c41eaa2f90912bb886b75950af5d433eb9e6007c17507e5da11e527ad38e5",
input={
"myprompt": "A SPECTROGRAM image",
"outWidth": 1024,
"outHeight": 1024,
"lora_scale": 0.6,
"num_outputs": 1,
"guidanceScale": 7.5,
"promptAddendum": "",
"high_noise_frac": 0.8,
"negative_prompt": "fuzzy, lone pixels",
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run georgedavila/sdxl-beethoven-spectrograms-lora using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "georgedavila/sdxl-beethoven-spectrograms-lora:193c41eaa2f90912bb886b75950af5d433eb9e6007c17507e5da11e527ad38e5",
"input": {
"myprompt": "A SPECTROGRAM image",
"outWidth": 1024,
"outHeight": 1024,
"lora_scale": 0.6,
"num_outputs": 1,
"guidanceScale": 7.5,
"promptAddendum": "",
"high_noise_frac": 0.8,
"negative_prompt": "fuzzy, lone pixels",
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/georgedavila/sdxl-beethoven-spectrograms-lora@sha256:193c41eaa2f90912bb886b75950af5d433eb9e6007c17507e5da11e527ad38e5 \
-i 'myprompt="A SPECTROGRAM image"' \
-i 'outWidth=1024' \
-i 'outHeight=1024' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidanceScale=7.5' \
-i 'promptAddendum=""' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt="fuzzy, lone pixels"' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/georgedavila/sdxl-beethoven-spectrograms-lora@sha256:193c41eaa2f90912bb886b75950af5d433eb9e6007c17507e5da11e527ad38e5
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "myprompt": "A SPECTROGRAM image", "outWidth": 1024, "outHeight": 1024, "lora_scale": 0.6, "num_outputs": 1, "guidanceScale": 7.5, "promptAddendum": "", "high_noise_frac": 0.8, "negative_prompt": "fuzzy, lone pixels", "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-05-29T16:14:09.349554Z",
"created_at": "2024-05-29T16:12:31.520000Z",
"data_removed": false,
"error": null,
"id": "q38mneyzm1rgm0cfrmfva99c7c",
"input": {
"myprompt": "A SPECTROGRAM image",
"outWidth": 1024,
"outHeight": 1024,
"lora_scale": 0.6,
"num_outputs": 1,
"guidanceScale": 7.5,
"promptAddendum": "",
"high_noise_frac": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 9964\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:16, 2.93it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.60it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.87it/s]\n 8%|▊ | 4/50 [00:01<00:11, 4.02it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.10it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.15it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.18it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.20it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.22it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.22it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.23it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.23it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.24it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.24it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.24it/s]\n 32%|███▏ | 16/50 [00:03<00:08, 4.24it/s]\n 34%|███▍ | 17/50 [00:04<00:07, 4.24it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.24it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.24it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.24it/s]\n 42%|████▏ | 21/50 [00:05<00:06, 4.24it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.24it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.24it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.24it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.24it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.25it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.26it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.26it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.26it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.27it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.27it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.27it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.27it/s]\n 68%|██████▊ | 34/50 [00:08<00:03, 4.26it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.26it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.26it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.26it/s]\n 76%|███████▌ | 38/50 [00:09<00:02, 4.26it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.26it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.26it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.26it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.26it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.26it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.22it/s]",
"metrics": {
"predict_time": 14.871608,
"total_time": 97.829554
},
"output": [
"https://replicate.delivery/pbxt/Y9Owe7ENpI12VKYDUNnwWLJXaem0mNHVhflfrqJbjoF9kBlLB/out-0.png"
],
"started_at": "2024-05-29T16:13:54.477946Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/q38mneyzm1rgm0cfrmfva99c7c",
"cancel": "https://api.replicate.com/v1/predictions/q38mneyzm1rgm0cfrmfva99c7c/cancel"
},
"version": "193c41eaa2f90912bb886b75950af5d433eb9e6007c17507e5da11e527ad38e5"
}
Using seed: 9964
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:16, 2.93it/s]
4%|▍ | 2/50 [00:00<00:13, 3.60it/s]
6%|▌ | 3/50 [00:00<00:12, 3.87it/s]
8%|▊ | 4/50 [00:01<00:11, 4.02it/s]
10%|█ | 5/50 [00:01<00:10, 4.10it/s]
12%|█▏ | 6/50 [00:01<00:10, 4.15it/s]
14%|█▍ | 7/50 [00:01<00:10, 4.18it/s]
16%|█▌ | 8/50 [00:01<00:09, 4.20it/s]
18%|█▊ | 9/50 [00:02<00:09, 4.22it/s]
20%|██ | 10/50 [00:02<00:09, 4.22it/s]
22%|██▏ | 11/50 [00:02<00:09, 4.23it/s]
24%|██▍ | 12/50 [00:02<00:08, 4.23it/s]
26%|██▌ | 13/50 [00:03<00:08, 4.24it/s]
28%|██▊ | 14/50 [00:03<00:08, 4.24it/s]
30%|███ | 15/50 [00:03<00:08, 4.24it/s]
32%|███▏ | 16/50 [00:03<00:08, 4.24it/s]
34%|███▍ | 17/50 [00:04<00:07, 4.24it/s]
36%|███▌ | 18/50 [00:04<00:07, 4.24it/s]
38%|███▊ | 19/50 [00:04<00:07, 4.24it/s]
40%|████ | 20/50 [00:04<00:07, 4.24it/s]
42%|████▏ | 21/50 [00:05<00:06, 4.24it/s]
44%|████▍ | 22/50 [00:05<00:06, 4.24it/s]
46%|████▌ | 23/50 [00:05<00:06, 4.24it/s]
48%|████▊ | 24/50 [00:05<00:06, 4.24it/s]
50%|█████ | 25/50 [00:05<00:05, 4.24it/s]
52%|█████▏ | 26/50 [00:06<00:05, 4.25it/s]
54%|█████▍ | 27/50 [00:06<00:05, 4.26it/s]
56%|█████▌ | 28/50 [00:06<00:05, 4.26it/s]
58%|█████▊ | 29/50 [00:06<00:04, 4.26it/s]
60%|██████ | 30/50 [00:07<00:04, 4.27it/s]
62%|██████▏ | 31/50 [00:07<00:04, 4.27it/s]
64%|██████▍ | 32/50 [00:07<00:04, 4.27it/s]
66%|██████▌ | 33/50 [00:07<00:03, 4.27it/s]
68%|██████▊ | 34/50 [00:08<00:03, 4.26it/s]
70%|███████ | 35/50 [00:08<00:03, 4.26it/s]
72%|███████▏ | 36/50 [00:08<00:03, 4.26it/s]
74%|███████▍ | 37/50 [00:08<00:03, 4.26it/s]
76%|███████▌ | 38/50 [00:09<00:02, 4.26it/s]
78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]
80%|████████ | 40/50 [00:09<00:02, 4.26it/s]
82%|████████▏ | 41/50 [00:09<00:02, 4.26it/s]
84%|████████▍ | 42/50 [00:09<00:01, 4.26it/s]
86%|████████▌ | 43/50 [00:10<00:01, 4.26it/s]
88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s]
90%|█████████ | 45/50 [00:10<00:01, 4.25it/s]
92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s]
94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s]
96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s]
98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s]
100%|██████████| 50/50 [00:11<00:00, 4.26it/s]
100%|██████████| 50/50 [00:11<00:00, 4.22it/s]