Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
grandlineai /instant-id-artistic:9cad10c7
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run grandlineai/instant-id-artistic using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"grandlineai/instant-id-artistic:9cad10c7870bac9d6b587f406aef28208f964454abff5c4152f7dec9b0212a9a",
{
input: {
image: "https://replicate.delivery/pbxt/KHSabPo4Rlrda2hgXDI9Dbukusbv2tMYj1oGrBG6VUkdvcAf/demo.png",
width: 640,
height: 640,
prompt: "mysterious silhouette forest woman, by Minjae Lee, Carne Griffiths, Emily Kell, Geoffroy Thoorens, Aaron Horkey, Jordan Grimmer, Greg Rutkowski, amazing depth, masterwork, surreal, geometric patterns, intricately detailed, bokeh, perfect balanced, deep fine borders, artistic photorealism , smooth, great masterwork by head of prompt engineering <lora:add-detail-xl:2>",
guidance_scale: 5,
negative_prompt: "boring,text,signature,logo,watermark,low quality, bad quality, loose artifacts, grainy, blurry, long neck, closed eyes, face jewellery",
ip_adapter_scale: 0.8,
num_inference_steps: 30,
controlnet_conditioning_scale: 0.8
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run grandlineai/instant-id-artistic using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"grandlineai/instant-id-artistic:9cad10c7870bac9d6b587f406aef28208f964454abff5c4152f7dec9b0212a9a",
input={
"image": "https://replicate.delivery/pbxt/KHSabPo4Rlrda2hgXDI9Dbukusbv2tMYj1oGrBG6VUkdvcAf/demo.png",
"width": 640,
"height": 640,
"prompt": "mysterious silhouette forest woman, by Minjae Lee, Carne Griffiths, Emily Kell, Geoffroy Thoorens, Aaron Horkey, Jordan Grimmer, Greg Rutkowski, amazing depth, masterwork, surreal, geometric patterns, intricately detailed, bokeh, perfect balanced, deep fine borders, artistic photorealism , smooth, great masterwork by head of prompt engineering <lora:add-detail-xl:2>",
"guidance_scale": 5,
"negative_prompt": "boring,text,signature,logo,watermark,low quality, bad quality, loose artifacts, grainy, blurry, long neck, closed eyes, face jewellery",
"ip_adapter_scale": 0.8,
"num_inference_steps": 30,
"controlnet_conditioning_scale": 0.8
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run grandlineai/instant-id-artistic using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "9cad10c7870bac9d6b587f406aef28208f964454abff5c4152f7dec9b0212a9a",
"input": {
"image": "https://replicate.delivery/pbxt/KHSabPo4Rlrda2hgXDI9Dbukusbv2tMYj1oGrBG6VUkdvcAf/demo.png",
"width": 640,
"height": 640,
"prompt": "mysterious silhouette forest woman, by Minjae Lee, Carne Griffiths, Emily Kell, Geoffroy Thoorens, Aaron Horkey, Jordan Grimmer, Greg Rutkowski, amazing depth, masterwork, surreal, geometric patterns, intricately detailed, bokeh, perfect balanced, deep fine borders, artistic photorealism , smooth, great masterwork by head of prompt engineering <lora:add-detail-xl:2>",
"guidance_scale": 5,
"negative_prompt": "boring,text,signature,logo,watermark,low quality, bad quality, loose artifacts, grainy, blurry, long neck, closed eyes, face jewellery",
"ip_adapter_scale": 0.8,
"num_inference_steps": 30,
"controlnet_conditioning_scale": 0.8
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-01-24T06:49:04.065504Z",
"created_at": "2024-01-24T06:48:26.077176Z",
"data_removed": false,
"error": null,
"id": "pai7jslbpt2jp3mdkds33abiry",
"input": {
"image": "https://replicate.delivery/pbxt/KHSabPo4Rlrda2hgXDI9Dbukusbv2tMYj1oGrBG6VUkdvcAf/demo.png",
"width": 640,
"height": 640,
"prompt": "mysterious silhouette forest woman, by Minjae Lee, Carne Griffiths, Emily Kell, Geoffroy Thoorens, Aaron Horkey, Jordan Grimmer, Greg Rutkowski, amazing depth, masterwork, surreal, geometric patterns, intricately detailed, bokeh, perfect balanced, deep fine borders, artistic photorealism , smooth, great masterwork by head of prompt engineering <lora:add-detail-xl:2>",
"guidance_scale": 5,
"negative_prompt": "boring,text,signature,logo,watermark,low quality, bad quality, loose artifacts, grainy, blurry, long neck, closed eyes, face jewellery",
"ip_adapter_scale": 0.8,
"num_inference_steps": 30,
"controlnet_conditioning_scale": 0.8
},
"logs": "The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['lora : add - detail - xl : 2 >']\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['lora : add - detail - xl : 2 >']\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:19, 1.47it/s]\n 7%|▋ | 2/30 [00:01<00:19, 1.47it/s]\n 10%|█ | 3/30 [00:02<00:18, 1.47it/s]\n 13%|█▎ | 4/30 [00:02<00:17, 1.47it/s]\n 17%|█▋ | 5/30 [00:03<00:17, 1.47it/s]\n 20%|██ | 6/30 [00:04<00:16, 1.47it/s]\n 23%|██▎ | 7/30 [00:04<00:15, 1.47it/s]\n 27%|██▋ | 8/30 [00:05<00:14, 1.47it/s]\n 30%|███ | 9/30 [00:06<00:14, 1.47it/s]\n 33%|███▎ | 10/30 [00:06<00:13, 1.47it/s]\n 37%|███▋ | 11/30 [00:07<00:12, 1.47it/s]\n 40%|████ | 12/30 [00:08<00:12, 1.47it/s]\n 43%|████▎ | 13/30 [00:08<00:11, 1.47it/s]\n 47%|████▋ | 14/30 [00:09<00:10, 1.47it/s]\n 50%|█████ | 15/30 [00:10<00:10, 1.47it/s]\n 53%|█████▎ | 16/30 [00:10<00:09, 1.47it/s]\n 57%|█████▋ | 17/30 [00:11<00:08, 1.47it/s]\n 60%|██████ | 18/30 [00:12<00:08, 1.47it/s]\n 63%|██████▎ | 19/30 [00:12<00:07, 1.47it/s]\n 67%|██████▋ | 20/30 [00:13<00:06, 1.47it/s]\n 70%|███████ | 21/30 [00:14<00:06, 1.47it/s]\n 73%|███████▎ | 22/30 [00:14<00:05, 1.47it/s]\n 77%|███████▋ | 23/30 [00:15<00:04, 1.46it/s]\n 80%|████████ | 24/30 [00:16<00:04, 1.46it/s]\n 83%|████████▎ | 25/30 [00:17<00:03, 1.46it/s]\n 87%|████████▋ | 26/30 [00:17<00:02, 1.47it/s]\n 90%|█████████ | 27/30 [00:18<00:02, 1.46it/s]\n 93%|█████████▎| 28/30 [00:19<00:01, 1.46it/s]\n 97%|█████████▋| 29/30 [00:19<00:00, 1.46it/s]\n100%|██████████| 30/30 [00:20<00:00, 1.46it/s]\n100%|██████████| 30/30 [00:20<00:00, 1.47it/s]",
"metrics": {
"predict_time": 37.935135,
"total_time": 37.988328
},
"output": "https://replicate.delivery/pbxt/8fPHPas9zbXbJayntWS0m9Wf8YCjpnKMYCyfuTE2fa1eby8RC/result.jpg",
"started_at": "2024-01-24T06:48:26.130369Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/pai7jslbpt2jp3mdkds33abiry",
"cancel": "https://api.replicate.com/v1/predictions/pai7jslbpt2jp3mdkds33abiry/cancel"
},
"version": "9cad10c7870bac9d6b587f406aef28208f964454abff5c4152f7dec9b0212a9a"
}
The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['lora : add - detail - xl : 2 >']
The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['lora : add - detail - xl : 2 >']
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:19, 1.47it/s]
7%|▋ | 2/30 [00:01<00:19, 1.47it/s]
10%|█ | 3/30 [00:02<00:18, 1.47it/s]
13%|█▎ | 4/30 [00:02<00:17, 1.47it/s]
17%|█▋ | 5/30 [00:03<00:17, 1.47it/s]
20%|██ | 6/30 [00:04<00:16, 1.47it/s]
23%|██▎ | 7/30 [00:04<00:15, 1.47it/s]
27%|██▋ | 8/30 [00:05<00:14, 1.47it/s]
30%|███ | 9/30 [00:06<00:14, 1.47it/s]
33%|███▎ | 10/30 [00:06<00:13, 1.47it/s]
37%|███▋ | 11/30 [00:07<00:12, 1.47it/s]
40%|████ | 12/30 [00:08<00:12, 1.47it/s]
43%|████▎ | 13/30 [00:08<00:11, 1.47it/s]
47%|████▋ | 14/30 [00:09<00:10, 1.47it/s]
50%|█████ | 15/30 [00:10<00:10, 1.47it/s]
53%|█████▎ | 16/30 [00:10<00:09, 1.47it/s]
57%|█████▋ | 17/30 [00:11<00:08, 1.47it/s]
60%|██████ | 18/30 [00:12<00:08, 1.47it/s]
63%|██████▎ | 19/30 [00:12<00:07, 1.47it/s]
67%|██████▋ | 20/30 [00:13<00:06, 1.47it/s]
70%|███████ | 21/30 [00:14<00:06, 1.47it/s]
73%|███████▎ | 22/30 [00:14<00:05, 1.47it/s]
77%|███████▋ | 23/30 [00:15<00:04, 1.46it/s]
80%|████████ | 24/30 [00:16<00:04, 1.46it/s]
83%|████████▎ | 25/30 [00:17<00:03, 1.46it/s]
87%|████████▋ | 26/30 [00:17<00:02, 1.47it/s]
90%|█████████ | 27/30 [00:18<00:02, 1.46it/s]
93%|█████████▎| 28/30 [00:19<00:01, 1.46it/s]
97%|█████████▋| 29/30 [00:19<00:00, 1.46it/s]
100%|██████████| 30/30 [00:20<00:00, 1.46it/s]
100%|██████████| 30/30 [00:20<00:00, 1.47it/s]