You're looking at a specific version of this model. Jump to the model overview.
justmalhar /sxdl-sketchnotes:988b3a09
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run justmalhar/sxdl-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"justmalhar/sxdl-sketchnotes:988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c",
{
input: {
width: 1024,
height: 1024,
prompt: "a sketchnote photo of TOK explaining what is Sketchnotes ",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 4,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run justmalhar/sxdl-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"justmalhar/sxdl-sketchnotes:988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c",
input={
"width": 1024,
"height": 1024,
"prompt": "a sketchnote photo of TOK explaining what is Sketchnotes ",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run justmalhar/sxdl-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a sketchnote photo of TOK explaining what is Sketchnotes ",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/justmalhar/sxdl-sketchnotes@sha256:988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="a sketchnote photo of TOK explaining what is Sketchnotes "' \
-i 'refine="expert_ensemble_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=4' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=false' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/justmalhar/sxdl-sketchnotes@sha256:988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "a sketchnote photo of TOK explaining what is Sketchnotes ", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 4, "guidance_scale": 7.5, "apply_watermark": false, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.060. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-05-22T18:30:25.496195Z",
"created_at": "2024-05-22T18:28:34.201000Z",
"data_removed": false,
"error": null,
"id": "5wva6kf935rgj0cfm67tscg92m",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a sketchnote photo of TOK explaining what is Sketchnotes ",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 20959\nEnsuring enough disk space...\nFree disk space: 1886305222656\nDownloading weights: https://replicate.delivery/pbxt/SemDU9mXjlQsa6nDjLaQLdgfQNI4Loqw3xHB6lQAzeJfi5bLB/trained_model.tar\n2024-05-22T18:29:31Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/864fe49e400e52a3 url=https://replicate.delivery/pbxt/SemDU9mXjlQsa6nDjLaQLdgfQNI4Loqw3xHB6lQAzeJfi5bLB/trained_model.tar\n2024-05-22T18:29:32Z | INFO | [ Complete ] dest=/src/weights-cache/864fe49e400e52a3 size=\"186 MB\" total_elapsed=0.671s url=https://replicate.delivery/pbxt/SemDU9mXjlQsa6nDjLaQLdgfQNI4Loqw3xHB6lQAzeJfi5bLB/trained_model.tar\nb''\nDownloaded weights in 0.7931919097900391 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a sketchnote photo of <s0><s1> explaining what is Sketchnotes\ntxt2img mode\n 0%| | 0/40 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.)\nreturn F.conv2d(input, weight, bias, self.stride,\n/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`\ndeprecate(\n 2%|▎ | 1/40 [00:01<00:41, 1.05s/it]\n 5%|▌ | 2/40 [00:01<00:36, 1.03it/s]\n 8%|▊ | 3/40 [00:02<00:34, 1.06it/s]\n 10%|█ | 4/40 [00:03<00:33, 1.07it/s]\n 12%|█▎ | 5/40 [00:04<00:32, 1.08it/s]\n 15%|█▌ | 6/40 [00:05<00:31, 1.08it/s]\n 18%|█▊ | 7/40 [00:06<00:30, 1.08it/s]\n 20%|██ | 8/40 [00:07<00:29, 1.09it/s]\n 22%|██▎ | 9/40 [00:08<00:28, 1.09it/s]\n 25%|██▌ | 10/40 [00:09<00:27, 1.09it/s]\n 28%|██▊ | 11/40 [00:10<00:26, 1.09it/s]\n 30%|███ | 12/40 [00:11<00:25, 1.09it/s]\n 32%|███▎ | 13/40 [00:12<00:24, 1.09it/s]\n 35%|███▌ | 14/40 [00:12<00:23, 1.09it/s]\n 38%|███▊ | 15/40 [00:13<00:22, 1.09it/s]\n 40%|████ | 16/40 [00:14<00:21, 1.09it/s]\n 42%|████▎ | 17/40 [00:15<00:21, 1.09it/s]\n 45%|████▌ | 18/40 [00:16<00:20, 1.09it/s]\n 48%|████▊ | 19/40 [00:17<00:19, 1.09it/s]\n 50%|█████ | 20/40 [00:18<00:18, 1.09it/s]\n 52%|█████▎ | 21/40 [00:19<00:17, 1.09it/s]\n 55%|█████▌ | 22/40 [00:20<00:16, 1.09it/s]\n 57%|█████▊ | 23/40 [00:21<00:15, 1.09it/s]\n 60%|██████ | 24/40 [00:22<00:14, 1.09it/s]\n 62%|██████▎ | 25/40 [00:23<00:13, 1.09it/s]\n 65%|██████▌ | 26/40 [00:23<00:12, 1.09it/s]\n 68%|██████▊ | 27/40 [00:24<00:11, 1.09it/s]\n 70%|███████ | 28/40 [00:25<00:11, 1.09it/s]\n 72%|███████▎ | 29/40 [00:26<00:10, 1.09it/s]\n 75%|███████▌ | 30/40 [00:27<00:09, 1.09it/s]\n 78%|███████▊ | 31/40 [00:28<00:08, 1.09it/s]\n 80%|████████ | 32/40 [00:29<00:07, 1.08it/s]\n 82%|████████▎ | 33/40 [00:30<00:06, 1.08it/s]\n 85%|████████▌ | 34/40 [00:31<00:05, 1.08it/s]\n 88%|████████▊ | 35/40 [00:32<00:04, 1.08it/s]\n 90%|█████████ | 36/40 [00:33<00:03, 1.08it/s]\n 92%|█████████▎| 37/40 [00:34<00:02, 1.08it/s]\n 95%|█████████▌| 38/40 [00:35<00:01, 1.08it/s]\n 98%|█████████▊| 39/40 [00:35<00:00, 1.08it/s]\n100%|██████████| 40/40 [00:36<00:00, 1.08it/s]\n100%|██████████| 40/40 [00:36<00:00, 1.08it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:08, 1.08it/s]\n 20%|██ | 2/10 [00:01<00:07, 1.09it/s]\n 30%|███ | 3/10 [00:02<00:06, 1.09it/s]\n 40%|████ | 4/10 [00:03<00:05, 1.09it/s]\n 50%|█████ | 5/10 [00:04<00:04, 1.08it/s]\n 60%|██████ | 6/10 [00:05<00:03, 1.09it/s]\n 70%|███████ | 7/10 [00:06<00:02, 1.09it/s]\n 80%|████████ | 8/10 [00:07<00:01, 1.09it/s]\n 90%|█████████ | 9/10 [00:08<00:00, 1.09it/s]\n100%|██████████| 10/10 [00:09<00:00, 1.09it/s]\n100%|██████████| 10/10 [00:09<00:00, 1.09it/s]",
"metrics": {
"predict_time": 53.751031,
"total_time": 111.295195
},
"output": [
"https://replicate.delivery/pbxt/POdn5Yai9npsPZl4xuWXexOYJwpTDYuXyd7ebA1xq3wfd9tlA/out-0.png",
"https://replicate.delivery/pbxt/5DY8wNw4dX42H5gMfmzQvlnrHwtJogaSf5WzCuMlYaqAvetlA/out-1.png",
"https://replicate.delivery/pbxt/E0scZMp9Qk6zPZJrfmmnUpQcJrTnCOe9NNp1IK2ZubBAvetlA/out-2.png",
"https://replicate.delivery/pbxt/nqU1dur06I5cMR5BIdsdiFzjSem0M685OfotOku9xIMBvetlA/out-3.png"
],
"started_at": "2024-05-22T18:29:31.745164Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/5wva6kf935rgj0cfm67tscg92m",
"cancel": "https://api.replicate.com/v1/predictions/5wva6kf935rgj0cfm67tscg92m/cancel"
},
"version": "988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c"
}
Using seed: 20959
Ensuring enough disk space...
Free disk space: 1886305222656
Downloading weights: https://replicate.delivery/pbxt/SemDU9mXjlQsa6nDjLaQLdgfQNI4Loqw3xHB6lQAzeJfi5bLB/trained_model.tar
2024-05-22T18:29:31Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/864fe49e400e52a3 url=https://replicate.delivery/pbxt/SemDU9mXjlQsa6nDjLaQLdgfQNI4Loqw3xHB6lQAzeJfi5bLB/trained_model.tar
2024-05-22T18:29:32Z | INFO | [ Complete ] dest=/src/weights-cache/864fe49e400e52a3 size="186 MB" total_elapsed=0.671s url=https://replicate.delivery/pbxt/SemDU9mXjlQsa6nDjLaQLdgfQNI4Loqw3xHB6lQAzeJfi5bLB/trained_model.tar
b''
Downloaded weights in 0.7931919097900391 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a sketchnote photo of <s0><s1> explaining what is Sketchnotes
txt2img mode
0%| | 0/40 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.)
return F.conv2d(input, weight, bias, self.stride,
/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`
deprecate(
2%|▎ | 1/40 [00:01<00:41, 1.05s/it]
5%|▌ | 2/40 [00:01<00:36, 1.03it/s]
8%|▊ | 3/40 [00:02<00:34, 1.06it/s]
10%|█ | 4/40 [00:03<00:33, 1.07it/s]
12%|█▎ | 5/40 [00:04<00:32, 1.08it/s]
15%|█▌ | 6/40 [00:05<00:31, 1.08it/s]
18%|█▊ | 7/40 [00:06<00:30, 1.08it/s]
20%|██ | 8/40 [00:07<00:29, 1.09it/s]
22%|██▎ | 9/40 [00:08<00:28, 1.09it/s]
25%|██▌ | 10/40 [00:09<00:27, 1.09it/s]
28%|██▊ | 11/40 [00:10<00:26, 1.09it/s]
30%|███ | 12/40 [00:11<00:25, 1.09it/s]
32%|███▎ | 13/40 [00:12<00:24, 1.09it/s]
35%|███▌ | 14/40 [00:12<00:23, 1.09it/s]
38%|███▊ | 15/40 [00:13<00:22, 1.09it/s]
40%|████ | 16/40 [00:14<00:21, 1.09it/s]
42%|████▎ | 17/40 [00:15<00:21, 1.09it/s]
45%|████▌ | 18/40 [00:16<00:20, 1.09it/s]
48%|████▊ | 19/40 [00:17<00:19, 1.09it/s]
50%|█████ | 20/40 [00:18<00:18, 1.09it/s]
52%|█████▎ | 21/40 [00:19<00:17, 1.09it/s]
55%|█████▌ | 22/40 [00:20<00:16, 1.09it/s]
57%|█████▊ | 23/40 [00:21<00:15, 1.09it/s]
60%|██████ | 24/40 [00:22<00:14, 1.09it/s]
62%|██████▎ | 25/40 [00:23<00:13, 1.09it/s]
65%|██████▌ | 26/40 [00:23<00:12, 1.09it/s]
68%|██████▊ | 27/40 [00:24<00:11, 1.09it/s]
70%|███████ | 28/40 [00:25<00:11, 1.09it/s]
72%|███████▎ | 29/40 [00:26<00:10, 1.09it/s]
75%|███████▌ | 30/40 [00:27<00:09, 1.09it/s]
78%|███████▊ | 31/40 [00:28<00:08, 1.09it/s]
80%|████████ | 32/40 [00:29<00:07, 1.08it/s]
82%|████████▎ | 33/40 [00:30<00:06, 1.08it/s]
85%|████████▌ | 34/40 [00:31<00:05, 1.08it/s]
88%|████████▊ | 35/40 [00:32<00:04, 1.08it/s]
90%|█████████ | 36/40 [00:33<00:03, 1.08it/s]
92%|█████████▎| 37/40 [00:34<00:02, 1.08it/s]
95%|█████████▌| 38/40 [00:35<00:01, 1.08it/s]
98%|█████████▊| 39/40 [00:35<00:00, 1.08it/s]
100%|██████████| 40/40 [00:36<00:00, 1.08it/s]
100%|██████████| 40/40 [00:36<00:00, 1.08it/s]
0%| | 0/10 [00:00<?, ?it/s]
10%|█ | 1/10 [00:00<00:08, 1.08it/s]
20%|██ | 2/10 [00:01<00:07, 1.09it/s]
30%|███ | 3/10 [00:02<00:06, 1.09it/s]
40%|████ | 4/10 [00:03<00:05, 1.09it/s]
50%|█████ | 5/10 [00:04<00:04, 1.08it/s]
60%|██████ | 6/10 [00:05<00:03, 1.09it/s]
70%|███████ | 7/10 [00:06<00:02, 1.09it/s]
80%|████████ | 8/10 [00:07<00:01, 1.09it/s]
90%|█████████ | 9/10 [00:08<00:00, 1.09it/s]
100%|██████████| 10/10 [00:09<00:00, 1.09it/s]
100%|██████████| 10/10 [00:09<00:00, 1.09it/s]