Readme
Prompt Prefix: a sketchnote photo of TOK
SDXL Fine tuned on sketchnote style images. Prompt Prefix: a sketchnote photo of TOK
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run justmalhar/sxdl-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"justmalhar/sxdl-sketchnotes:988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c",
{
input: {
width: 1024,
height: 1024,
prompt: "a sketchnote photo of TOK explaining types of sorting algorithms",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 4,
guidance_scale: 7.5,
apply_watermark: false,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run justmalhar/sxdl-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"justmalhar/sxdl-sketchnotes:988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c",
input={
"width": 1024,
"height": 1024,
"prompt": "a sketchnote photo of TOK explaining types of sorting algorithms",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": False,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run justmalhar/sxdl-sketchnotes using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a sketchnote photo of TOK explaining types of sorting algorithms",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-05-22T18:24:46.635355Z",
"created_at": "2024-05-22T18:23:47.993000Z",
"data_removed": false,
"error": null,
"id": "f02z3qwb35rgg0cfm65rgz7q30",
"input": {
"width": 1024,
"height": 1024,
"prompt": "a sketchnote photo of TOK explaining types of sorting algorithms",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": false,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 9272\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: a sketchnote photo of <s0><s1> explaining types of sorting algorithms\ntxt2img mode\n 0%| | 0/40 [00:00<?, ?it/s]\n 2%|▎ | 1/40 [00:00<00:35, 1.09it/s]\n 5%|▌ | 2/40 [00:01<00:34, 1.09it/s]\n 8%|▊ | 3/40 [00:02<00:34, 1.09it/s]\n 10%|█ | 4/40 [00:03<00:33, 1.09it/s]\n 12%|█▎ | 5/40 [00:04<00:32, 1.09it/s]\n 15%|█▌ | 6/40 [00:05<00:31, 1.08it/s]\n 18%|█▊ | 7/40 [00:06<00:30, 1.08it/s]\n 20%|██ | 8/40 [00:07<00:29, 1.08it/s]\n 22%|██▎ | 9/40 [00:08<00:28, 1.08it/s]\n 25%|██▌ | 10/40 [00:09<00:27, 1.08it/s]\n 28%|██▊ | 11/40 [00:10<00:26, 1.08it/s]\n 30%|███ | 12/40 [00:11<00:25, 1.08it/s]\n 32%|███▎ | 13/40 [00:11<00:24, 1.08it/s]\n 35%|███▌ | 14/40 [00:12<00:24, 1.08it/s]\n 38%|███▊ | 15/40 [00:13<00:23, 1.08it/s]\n 40%|████ | 16/40 [00:14<00:22, 1.08it/s]\n 42%|████▎ | 17/40 [00:15<00:21, 1.08it/s]\n 45%|████▌ | 18/40 [00:16<00:20, 1.08it/s]\n 48%|████▊ | 19/40 [00:17<00:19, 1.08it/s]\n 50%|█████ | 20/40 [00:18<00:18, 1.08it/s]\n 52%|█████▎ | 21/40 [00:19<00:17, 1.08it/s]\n 55%|█████▌ | 22/40 [00:20<00:16, 1.08it/s]\n 57%|█████▊ | 23/40 [00:21<00:15, 1.08it/s]\n 60%|██████ | 24/40 [00:22<00:14, 1.08it/s]\n 62%|██████▎ | 25/40 [00:23<00:13, 1.08it/s]\n 65%|██████▌ | 26/40 [00:24<00:12, 1.08it/s]\n 68%|██████▊ | 27/40 [00:24<00:12, 1.08it/s]\n 70%|███████ | 28/40 [00:25<00:11, 1.08it/s]\n 72%|███████▎ | 29/40 [00:26<00:10, 1.08it/s]\n 75%|███████▌ | 30/40 [00:27<00:09, 1.08it/s]\n 78%|███████▊ | 31/40 [00:28<00:08, 1.08it/s]\n 80%|████████ | 32/40 [00:29<00:07, 1.08it/s]\n 82%|████████▎ | 33/40 [00:30<00:06, 1.08it/s]\n 85%|████████▌ | 34/40 [00:31<00:05, 1.08it/s]\n 88%|████████▊ | 35/40 [00:32<00:04, 1.08it/s]\n 90%|█████████ | 36/40 [00:33<00:03, 1.08it/s]\n 92%|█████████▎| 37/40 [00:34<00:02, 1.08it/s]\n 95%|█████████▌| 38/40 [00:35<00:01, 1.08it/s]\n 98%|█████████▊| 39/40 [00:36<00:00, 1.08it/s]\n100%|██████████| 40/40 [00:36<00:00, 1.08it/s]\n100%|██████████| 40/40 [00:36<00:00, 1.08it/s]\n 0%| | 0/10 [00:00<?, ?it/s]\n 10%|█ | 1/10 [00:00<00:08, 1.08it/s]\n 20%|██ | 2/10 [00:01<00:07, 1.08it/s]\n 30%|███ | 3/10 [00:02<00:06, 1.09it/s]\n 40%|████ | 4/10 [00:03<00:05, 1.08it/s]\n 50%|█████ | 5/10 [00:04<00:04, 1.08it/s]\n 60%|██████ | 6/10 [00:05<00:03, 1.08it/s]\n 70%|███████ | 7/10 [00:06<00:02, 1.08it/s]\n 80%|████████ | 8/10 [00:07<00:01, 1.08it/s]\n 90%|█████████ | 9/10 [00:08<00:00, 1.08it/s]\n100%|██████████| 10/10 [00:09<00:00, 1.08it/s]\n100%|██████████| 10/10 [00:09<00:00, 1.08it/s]",
"metrics": {
"predict_time": 53.310049,
"total_time": 58.642355
},
"output": [
"https://replicate.delivery/pbxt/J9or5jf3xZ31E6PsS4hA4lcRwzYs3faVmnJ6U3o8cOSspetlA/out-0.png",
"https://replicate.delivery/pbxt/TSqUfoznfPp7TE39TLUeh3bYLEbTNWctNnve3oBHcE93m6bLB/out-1.png",
"https://replicate.delivery/pbxt/I3dgpOKJR6Y7N1IeZi1xd2FWwHMSQAiuUsywJYeRg39tpetlA/out-2.png",
"https://replicate.delivery/pbxt/gclBkGsjo4rOH9hfevFqMKFbuDSWZLHckJm95jtZuD3upetlA/out-3.png"
],
"started_at": "2024-05-22T18:23:53.325306Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/f02z3qwb35rgg0cfm65rgz7q30",
"cancel": "https://api.replicate.com/v1/predictions/f02z3qwb35rgg0cfm65rgz7q30/cancel"
},
"version": "988b3a09e1c2441fb4f22a04aeae435ddb0467357b7dec3337fef7ccc6f7df7c"
}
Using seed: 9272
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a sketchnote photo of <s0><s1> explaining types of sorting algorithms
txt2img mode
0%| | 0/40 [00:00<?, ?it/s]
2%|▎ | 1/40 [00:00<00:35, 1.09it/s]
5%|▌ | 2/40 [00:01<00:34, 1.09it/s]
8%|▊ | 3/40 [00:02<00:34, 1.09it/s]
10%|█ | 4/40 [00:03<00:33, 1.09it/s]
12%|█▎ | 5/40 [00:04<00:32, 1.09it/s]
15%|█▌ | 6/40 [00:05<00:31, 1.08it/s]
18%|█▊ | 7/40 [00:06<00:30, 1.08it/s]
20%|██ | 8/40 [00:07<00:29, 1.08it/s]
22%|██▎ | 9/40 [00:08<00:28, 1.08it/s]
25%|██▌ | 10/40 [00:09<00:27, 1.08it/s]
28%|██▊ | 11/40 [00:10<00:26, 1.08it/s]
30%|███ | 12/40 [00:11<00:25, 1.08it/s]
32%|███▎ | 13/40 [00:11<00:24, 1.08it/s]
35%|███▌ | 14/40 [00:12<00:24, 1.08it/s]
38%|███▊ | 15/40 [00:13<00:23, 1.08it/s]
40%|████ | 16/40 [00:14<00:22, 1.08it/s]
42%|████▎ | 17/40 [00:15<00:21, 1.08it/s]
45%|████▌ | 18/40 [00:16<00:20, 1.08it/s]
48%|████▊ | 19/40 [00:17<00:19, 1.08it/s]
50%|█████ | 20/40 [00:18<00:18, 1.08it/s]
52%|█████▎ | 21/40 [00:19<00:17, 1.08it/s]
55%|█████▌ | 22/40 [00:20<00:16, 1.08it/s]
57%|█████▊ | 23/40 [00:21<00:15, 1.08it/s]
60%|██████ | 24/40 [00:22<00:14, 1.08it/s]
62%|██████▎ | 25/40 [00:23<00:13, 1.08it/s]
65%|██████▌ | 26/40 [00:24<00:12, 1.08it/s]
68%|██████▊ | 27/40 [00:24<00:12, 1.08it/s]
70%|███████ | 28/40 [00:25<00:11, 1.08it/s]
72%|███████▎ | 29/40 [00:26<00:10, 1.08it/s]
75%|███████▌ | 30/40 [00:27<00:09, 1.08it/s]
78%|███████▊ | 31/40 [00:28<00:08, 1.08it/s]
80%|████████ | 32/40 [00:29<00:07, 1.08it/s]
82%|████████▎ | 33/40 [00:30<00:06, 1.08it/s]
85%|████████▌ | 34/40 [00:31<00:05, 1.08it/s]
88%|████████▊ | 35/40 [00:32<00:04, 1.08it/s]
90%|█████████ | 36/40 [00:33<00:03, 1.08it/s]
92%|█████████▎| 37/40 [00:34<00:02, 1.08it/s]
95%|█████████▌| 38/40 [00:35<00:01, 1.08it/s]
98%|█████████▊| 39/40 [00:36<00:00, 1.08it/s]
100%|██████████| 40/40 [00:36<00:00, 1.08it/s]
100%|██████████| 40/40 [00:36<00:00, 1.08it/s]
0%| | 0/10 [00:00<?, ?it/s]
10%|█ | 1/10 [00:00<00:08, 1.08it/s]
20%|██ | 2/10 [00:01<00:07, 1.08it/s]
30%|███ | 3/10 [00:02<00:06, 1.09it/s]
40%|████ | 4/10 [00:03<00:05, 1.08it/s]
50%|█████ | 5/10 [00:04<00:04, 1.08it/s]
60%|██████ | 6/10 [00:05<00:03, 1.08it/s]
70%|███████ | 7/10 [00:06<00:02, 1.08it/s]
80%|████████ | 8/10 [00:07<00:01, 1.08it/s]
90%|█████████ | 9/10 [00:08<00:00, 1.08it/s]
100%|██████████| 10/10 [00:09<00:00, 1.08it/s]
100%|██████████| 10/10 [00:09<00:00, 1.08it/s]
This model costs approximately $0.061 to run on Replicate, or 16 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 63 seconds. The predict time for this model varies significantly based on the inputs.
Prompt Prefix: a sketchnote photo of TOK
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 9272
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: a sketchnote photo of <s0><s1> explaining types of sorting algorithms
txt2img mode
0%| | 0/40 [00:00<?, ?it/s]
2%|▎ | 1/40 [00:00<00:35, 1.09it/s]
5%|▌ | 2/40 [00:01<00:34, 1.09it/s]
8%|▊ | 3/40 [00:02<00:34, 1.09it/s]
10%|█ | 4/40 [00:03<00:33, 1.09it/s]
12%|█▎ | 5/40 [00:04<00:32, 1.09it/s]
15%|█▌ | 6/40 [00:05<00:31, 1.08it/s]
18%|█▊ | 7/40 [00:06<00:30, 1.08it/s]
20%|██ | 8/40 [00:07<00:29, 1.08it/s]
22%|██▎ | 9/40 [00:08<00:28, 1.08it/s]
25%|██▌ | 10/40 [00:09<00:27, 1.08it/s]
28%|██▊ | 11/40 [00:10<00:26, 1.08it/s]
30%|███ | 12/40 [00:11<00:25, 1.08it/s]
32%|███▎ | 13/40 [00:11<00:24, 1.08it/s]
35%|███▌ | 14/40 [00:12<00:24, 1.08it/s]
38%|███▊ | 15/40 [00:13<00:23, 1.08it/s]
40%|████ | 16/40 [00:14<00:22, 1.08it/s]
42%|████▎ | 17/40 [00:15<00:21, 1.08it/s]
45%|████▌ | 18/40 [00:16<00:20, 1.08it/s]
48%|████▊ | 19/40 [00:17<00:19, 1.08it/s]
50%|█████ | 20/40 [00:18<00:18, 1.08it/s]
52%|█████▎ | 21/40 [00:19<00:17, 1.08it/s]
55%|█████▌ | 22/40 [00:20<00:16, 1.08it/s]
57%|█████▊ | 23/40 [00:21<00:15, 1.08it/s]
60%|██████ | 24/40 [00:22<00:14, 1.08it/s]
62%|██████▎ | 25/40 [00:23<00:13, 1.08it/s]
65%|██████▌ | 26/40 [00:24<00:12, 1.08it/s]
68%|██████▊ | 27/40 [00:24<00:12, 1.08it/s]
70%|███████ | 28/40 [00:25<00:11, 1.08it/s]
72%|███████▎ | 29/40 [00:26<00:10, 1.08it/s]
75%|███████▌ | 30/40 [00:27<00:09, 1.08it/s]
78%|███████▊ | 31/40 [00:28<00:08, 1.08it/s]
80%|████████ | 32/40 [00:29<00:07, 1.08it/s]
82%|████████▎ | 33/40 [00:30<00:06, 1.08it/s]
85%|████████▌ | 34/40 [00:31<00:05, 1.08it/s]
88%|████████▊ | 35/40 [00:32<00:04, 1.08it/s]
90%|█████████ | 36/40 [00:33<00:03, 1.08it/s]
92%|█████████▎| 37/40 [00:34<00:02, 1.08it/s]
95%|█████████▌| 38/40 [00:35<00:01, 1.08it/s]
98%|█████████▊| 39/40 [00:36<00:00, 1.08it/s]
100%|██████████| 40/40 [00:36<00:00, 1.08it/s]
100%|██████████| 40/40 [00:36<00:00, 1.08it/s]
0%| | 0/10 [00:00<?, ?it/s]
10%|█ | 1/10 [00:00<00:08, 1.08it/s]
20%|██ | 2/10 [00:01<00:07, 1.08it/s]
30%|███ | 3/10 [00:02<00:06, 1.09it/s]
40%|████ | 4/10 [00:03<00:05, 1.08it/s]
50%|█████ | 5/10 [00:04<00:04, 1.08it/s]
60%|██████ | 6/10 [00:05<00:03, 1.08it/s]
70%|███████ | 7/10 [00:06<00:02, 1.08it/s]
80%|████████ | 8/10 [00:07<00:01, 1.08it/s]
90%|█████████ | 9/10 [00:08<00:00, 1.08it/s]
100%|██████████| 10/10 [00:09<00:00, 1.08it/s]
100%|██████████| 10/10 [00:09<00:00, 1.08it/s]