You're looking at a specific version of this model. Jump to the model overview.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run kuprel/min-dalle using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"kuprel/min-dalle:c1fca4bef52afc0c3a556060df13d7d7c429a1310feeedbb5c3f92b7002822de",
{
input: {
text: "Photo realistic render, 8K UHD, trending on artstation: (subject= dieselpunk Building + subject detail= high detailed, high level texture render) + ( background = deepsea+ background detail = calm water, sunset, high detailed, large depth of field)",
top_k: 16384,
seamless: false,
grid_size: 3,
save_as_png: false,
temperature: 0.31,
progressive_outputs: true,
supercondition_factor: 32
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run kuprel/min-dalle using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"kuprel/min-dalle:c1fca4bef52afc0c3a556060df13d7d7c429a1310feeedbb5c3f92b7002822de",
input={
"text": "Photo realistic render, 8K UHD, trending on artstation: (subject= dieselpunk Building + subject detail= high detailed, high level texture render) + ( background = deepsea+ background detail = calm water, sunset, high detailed, large depth of field)",
"top_k": 16384,
"seamless": False,
"grid_size": 3,
"save_as_png": False,
"temperature": 0.31,
"progressive_outputs": True,
"supercondition_factor": 32
}
)
# The kuprel/min-dalle model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/kuprel/min-dalle/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run kuprel/min-dalle using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "kuprel/min-dalle:c1fca4bef52afc0c3a556060df13d7d7c429a1310feeedbb5c3f92b7002822de",
"input": {
"text": "Photo realistic render, 8K UHD, trending on artstation: (subject= dieselpunk Building + subject detail= high detailed, high level texture render) + ( background = deepsea+ background detail = calm water, sunset, high detailed, large depth of field)",
"top_k": 16384,
"seamless": false,
"grid_size": 3,
"save_as_png": false,
"temperature": 0.31,
"progressive_outputs": true,
"supercondition_factor": 32
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/kuprel/min-dalle@sha256:c1fca4bef52afc0c3a556060df13d7d7c429a1310feeedbb5c3f92b7002822de \
-i 'text="Photo realistic render, 8K UHD, trending on artstation: (subject= dieselpunk Building + subject detail= high detailed, high level texture render) + ( background = deepsea+ background detail = calm water, sunset, high detailed, large depth of field)"' \
-i 'top_k=16384' \
-i 'seamless=false' \
-i 'grid_size=3' \
-i 'save_as_png=false' \
-i 'temperature=0.31' \
-i 'progressive_outputs=true' \
-i 'supercondition_factor=32'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/kuprel/min-dalle@sha256:c1fca4bef52afc0c3a556060df13d7d7c429a1310feeedbb5c3f92b7002822de
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "text": "Photo realistic render, 8K UHD, trending on artstation: (subject= dieselpunk Building + subject detail= high detailed, high level texture render) + ( background = deepsea+ background detail = calm water, sunset, high detailed, large depth of field)", "top_k": 16384, "seamless": false, "grid_size": 3, "save_as_png": false, "temperature": 0.31, "progressive_outputs": true, "supercondition_factor": 32 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.036. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-07-20T14:48:12.070276Z",
"created_at": "2022-07-20T14:47:57.505235Z",
"data_removed": false,
"error": null,
"id": "65tuaoyirfak3pqxpmz2kmy75q",
"input": {
"text": "Photo realistic render, 8K UHD, trending on artstation: (subject= dieselpunk Building + subject detail= high detailed, high level texture render) + ( background = deepsea+ background detail = calm water, sunset, high detailed, large depth of field)",
"top_k": "16384",
"grid_size": "3",
"temperature": "0.31",
"progressive_outputs": true,
"supercondition_factor": "32"
},
"logs": "tokenizing text\n['Ġphoto']\n['Ġrealistic']\n['Ġrender', ',']\n['Ġ8', 'k']\n['Ġuhd', ',']\n['Ġtrending']\n['Ġon']\n['Ġartstation', ':']\n['Ġ', '(', 'sub', 'ject', '=']\n['Ġdiesel', 'punk']\n['Ġbuilding']\n['Ġ', '+']\n['Ġsubject']\n['Ġdetail', '=']\n['Ġhigh']\n['Ġdetailed', ',']\n['Ġhigh']\n['Ġlevel']\n['Ġtexture']\n['Ġrender', ')']\n['Ġ', '+']\n['Ġ', '(']\n['Ġbackground']\n['Ġ', '=']\n['Ġdeep', 'sea', '+']\n['Ġbackground']\n['Ġdetail']\n['Ġ', '=']\n['Ġcalm']\n['Ġwater', ',']\n['Ġsunset', ',']\n['Ġhigh']\n['Ġdetailed', ',']\n['Ġlarge']\n['Ġdepth']\n['Ġof']\n['Ġfield', ')']\n62 text tokens [0, 564, 10573, 14110, 11, 416, 38, 20531, 11, 10119, 133, 4640, 3, 54, 3, 45878, 836, 3, 6070, 14958, 1855, 54, 3, 11398, 5854, 3, 524, 8461, 11, 524, 3220, 7141, 14110, 3, 54, 3, 54, 3, 1396, 54, 3, 2720, 4506, 3, 1396, 5854, 54, 3, 6653, 725, 11, 4450, 11, 524, 8461, 11, 2033, 10162, 111, 2851, 3, 2]\nencoding text tokens\ndetokenizing image\ndetokenizing image\ndetokenizing image\ndetokenizing image\ndetokenizing image\ndetokenizing image\ndetokenizing image\ndetokenizing image",
"metrics": {
"predict_time": 14.406796,
"total_time": 14.565041
},
"output": [
"https://replicate.delivery/mgxm/7eb02ed0-098d-4a73-b795-7cf7bd41bc42/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg",
"https://replicate.delivery/mgxm/8431758a-f38f-4c0e-a1db-ed0262ee77bb/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg",
"https://replicate.delivery/mgxm/b8e33e64-39ce-4f4d-9291-9a46a541407b/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg",
"https://replicate.delivery/mgxm/76bc27b7-cb5c-4a93-95b7-06bc2b89d767/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg",
"https://replicate.delivery/mgxm/31734fe7-3044-4d27-91b7-82c16e03802f/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg",
"https://replicate.delivery/mgxm/a6e3581a-ebb7-471a-bc25-3e96f0cd403f/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg",
"https://replicate.delivery/mgxm/18752def-0534-49ef-8e30-8594b4f341cc/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg",
"https://replicate.delivery/mgxm/ae803d6f-54b5-4847-a07f-d938a796e4f2/photo-realistic-render-k-uhd-trending-on-artstation-subject.jpg"
],
"started_at": "2022-07-20T14:47:57.663480Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/65tuaoyirfak3pqxpmz2kmy75q",
"cancel": "https://api.replicate.com/v1/predictions/65tuaoyirfak3pqxpmz2kmy75q/cancel"
},
"version": "c1fca4bef52afc0c3a556060df13d7d7c429a1310feeedbb5c3f92b7002822de"
}
tokenizing text
['Ġphoto']
['Ġrealistic']
['Ġrender', ',']
['Ġ8', 'k']
['Ġuhd', ',']
['Ġtrending']
['Ġon']
['Ġartstation', ':']
['Ġ', '(', 'sub', 'ject', '=']
['Ġdiesel', 'punk']
['Ġbuilding']
['Ġ', '+']
['Ġsubject']
['Ġdetail', '=']
['Ġhigh']
['Ġdetailed', ',']
['Ġhigh']
['Ġlevel']
['Ġtexture']
['Ġrender', ')']
['Ġ', '+']
['Ġ', '(']
['Ġbackground']
['Ġ', '=']
['Ġdeep', 'sea', '+']
['Ġbackground']
['Ġdetail']
['Ġ', '=']
['Ġcalm']
['Ġwater', ',']
['Ġsunset', ',']
['Ġhigh']
['Ġdetailed', ',']
['Ġlarge']
['Ġdepth']
['Ġof']
['Ġfield', ')']
62 text tokens [0, 564, 10573, 14110, 11, 416, 38, 20531, 11, 10119, 133, 4640, 3, 54, 3, 45878, 836, 3, 6070, 14958, 1855, 54, 3, 11398, 5854, 3, 524, 8461, 11, 524, 3220, 7141, 14110, 3, 54, 3, 54, 3, 1396, 54, 3, 2720, 4506, 3, 1396, 5854, 54, 3, 6653, 725, 11, 4450, 11, 524, 8461, 11, 2033, 10162, 111, 2851, 3, 2]
encoding text tokens
detokenizing image
detokenizing image
detokenizing image
detokenizing image
detokenizing image
detokenizing image
detokenizing image
detokenizing image