You're looking at a specific version of this model. Jump to the model overview.
lucataco /flux-queso:d1d8238f
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/flux-queso using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/flux-queso:d1d8238f1f13d80aafc655c5998bcdcc12d04e3bddd227c5fc840fce6ae9a2ab",
{
input: {
model: "dev",
prompt: "TOK, a vibrant watercolor painting of TOK lounging on a beach",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 2,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 28
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lucataco/flux-queso using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/flux-queso:d1d8238f1f13d80aafc655c5998bcdcc12d04e3bddd227c5fc840fce6ae9a2ab",
input={
"model": "dev",
"prompt": "TOK, a vibrant watercolor painting of TOK lounging on a beach",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 2,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/flux-queso using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "d1d8238f1f13d80aafc655c5998bcdcc12d04e3bddd227c5fc840fce6ae9a2ab",
"input": {
"model": "dev",
"prompt": "TOK, a vibrant watercolor painting of TOK lounging on a beach",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 2,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lucataco/flux-queso@sha256:d1d8238f1f13d80aafc655c5998bcdcc12d04e3bddd227c5fc840fce6ae9a2ab \
-i 'model="dev"' \
-i 'prompt="TOK, a vibrant watercolor painting of TOK lounging on a beach"' \
-i 'go_fast=false' \
-i 'lora_scale=1' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=2' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=1' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lucataco/flux-queso@sha256:d1d8238f1f13d80aafc655c5998bcdcc12d04e3bddd227c5fc840fce6ae9a2ab
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "TOK, a vibrant watercolor painting of TOK lounging on a beach", "go_fast": false, "lora_scale": 1, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 2, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 1, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2024-08-15T21:00:55.942102Z",
"created_at": "2024-08-15T21:00:39.151000Z",
"data_removed": false,
"error": null,
"id": "d6hb0qnhdxrm00chazbsnj9pbg",
"input": {
"model": "dev",
"prompt": "TOK, a vibrant watercolor painting of TOK lounging on a beach",
"lora_scale": 1,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 2,
"output_quality": 80,
"num_inference_steps": 28
},
"logs": "Using seed: 23002\nPrompt: TOK, a vibrant watercolor painting of TOK lounging on a beach\ntxt2img mode\nUsing dev model\nLoading LoRA weights from https://replicate.delivery/yhqm/xIUPCppeslXbaC6D8hzONTPKFURik2zRMLmmif0GRq2f55lmA/trained_model.tar\nLoRA weights loaded successfully\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.68it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.21it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.93it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.72it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.70it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.69it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.68it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.67it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.67it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.66it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.66it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.65it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.66it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.69it/s]",
"metrics": {
"predict_time": 16.733405885,
"total_time": 16.791102
},
"output": [
"https://replicate.delivery/yhqm/oj6PHkrzeH1BPS5620ZlDtv1ZyceltPe7nXX5YSzKfWeQPYaC/out-0.webp"
],
"started_at": "2024-08-15T21:00:39.208696Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/d6hb0qnhdxrm00chazbsnj9pbg",
"cancel": "https://api.replicate.com/v1/predictions/d6hb0qnhdxrm00chazbsnj9pbg/cancel"
},
"version": "d1d8238f1f13d80aafc655c5998bcdcc12d04e3bddd227c5fc840fce6ae9a2ab"
}
Using seed: 23002
Prompt: TOK, a vibrant watercolor painting of TOK lounging on a beach
txt2img mode
Using dev model
Loading LoRA weights from https://replicate.delivery/yhqm/xIUPCppeslXbaC6D8hzONTPKFURik2zRMLmmif0GRq2f55lmA/trained_model.tar
LoRA weights loaded successfully
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.68it/s]
7%|▋ | 2/28 [00:00<00:06, 4.21it/s]
11%|█ | 3/28 [00:00<00:06, 3.93it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.83it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.77it/s]
21%|██▏ | 6/28 [00:01<00:05, 3.72it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.70it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.69it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.68it/s]
36%|███▌ | 10/28 [00:02<00:04, 3.67it/s]
39%|███▉ | 11/28 [00:02<00:04, 3.67it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.67it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.67it/s]
50%|█████ | 14/28 [00:03<00:03, 3.66it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.66it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.66it/s]
61%|██████ | 17/28 [00:04<00:03, 3.66it/s]
64%|██████▍ | 18/28 [00:04<00:02, 3.66it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.65it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.66it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.66it/s]
79%|███████▊ | 22/28 [00:05<00:01, 3.65it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.65it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.66it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.66it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.66it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.65it/s]
100%|██████████| 28/28 [00:07<00:00, 3.66it/s]
100%|██████████| 28/28 [00:07<00:00, 3.69it/s]