You're looking at a specific version of this model. Jump to the model overview.
marydotdev /sdxl-lego:9ddc2c98
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6",
{
input: {
width: 1024,
height: 1024,
prompt: "charlie and the chocolate factory as a lego set in the style of TOK",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6",
input={
"width": 1024,
"height": 1024,
"prompt": "charlie and the chocolate factory as a lego set in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run marydotdev/sdxl-lego using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "marydotdev/sdxl-lego:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6",
"input": {
"width": 1024,
"height": 1024,
"prompt": "charlie and the chocolate factory as a lego set in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/marydotdev/sdxl-lego@sha256:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6 \
-i 'width=1024' \
-i 'height=1024' \
-i 'prompt="charlie and the chocolate factory as a lego set in the style of TOK"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/marydotdev/sdxl-lego@sha256:9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "charlie and the chocolate factory as a lego set in the style of TOK", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.030. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-12T04:53:24.066181Z",
"created_at": "2023-11-12T04:53:03.172666Z",
"data_removed": false,
"error": null,
"id": "oxg2kg3b2lvwdjgi6jf3waldme",
"input": {
"width": 1024,
"height": 1024,
"prompt": "charlie and the chocolate factory as a lego set in the style of TOK",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 10663\nEnsuring enough disk space...\nFree disk space: 1834566115328\nDownloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar\nb'Downloaded 186 MB bytes in 0.433s (429 MB/s)\\nExtracted 186 MB in 0.050s (3.7 GB/s)\\n'\nDownloaded weights in 0.6059157848358154 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: charlie and the chocolate factory as a lego set in the style of <s0><s1>\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:13, 3.65it/s]\n 4%|▍ | 2/50 [00:00<00:13, 3.64it/s]\n 6%|▌ | 3/50 [00:00<00:12, 3.65it/s]\n 8%|▊ | 4/50 [00:01<00:12, 3.64it/s]\n 10%|█ | 5/50 [00:01<00:12, 3.64it/s]\n 12%|█▏ | 6/50 [00:01<00:12, 3.63it/s]\n 14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]\n 18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.63it/s]\n 22%|██▏ | 11/50 [00:03<00:10, 3.63it/s]\n 24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]\n 26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]\n 28%|██▊ | 14/50 [00:03<00:09, 3.63it/s]\n 30%|███ | 15/50 [00:04<00:09, 3.63it/s]\n 32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]\n 34%|███▍ | 17/50 [00:04<00:09, 3.63it/s]\n 36%|███▌ | 18/50 [00:04<00:08, 3.63it/s]\n 38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.62it/s]\n 42%|████▏ | 21/50 [00:05<00:08, 3.62it/s]\n 44%|████▍ | 22/50 [00:06<00:07, 3.62it/s]\n 46%|████▌ | 23/50 [00:06<00:07, 3.62it/s]\n 48%|████▊ | 24/50 [00:06<00:07, 3.62it/s]\n 50%|█████ | 25/50 [00:06<00:06, 3.62it/s]\n 52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s]\n 54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]\n 56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]\n 58%|█████▊ | 29/50 [00:07<00:05, 3.61it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.62it/s]\n 62%|██████▏ | 31/50 [00:08<00:05, 3.62it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 3.62it/s]\n 66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s]\n 68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s]\n 70%|███████ | 35/50 [00:09<00:04, 3.61it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]\n 74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s]\n 76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s]\n 78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.61it/s]\n 82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s]\n 84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s]\n 88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s]\n 90%|█████████ | 45/50 [00:12<00:01, 3.61it/s]\n 92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s]\n 96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]\n 98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.61it/s]\n100%|██████████| 50/50 [00:13<00:00, 3.62it/s]",
"metrics": {
"predict_time": 16.913219,
"total_time": 20.893515
},
"output": [
"https://replicate.delivery/pbxt/XYGTuLTne825HSu4CoQm8iFvYIfNclRGwXRzSpniOfoGiBvjA/out-0.png"
],
"started_at": "2023-11-12T04:53:07.152962Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/oxg2kg3b2lvwdjgi6jf3waldme",
"cancel": "https://api.replicate.com/v1/predictions/oxg2kg3b2lvwdjgi6jf3waldme/cancel"
},
"version": "9ddc2c9883e658f1317fd39b4d150ff79376cc8e63421a97ab5d0d5d757e1ab6"
}
Using seed: 10663
Ensuring enough disk space...
Free disk space: 1834566115328
Downloading weights: https://replicate.delivery/pbxt/IYehcEmlq6wpQ6TyiKkakCb5fUmfoO1rY43tX85uC9vRcAvjA/trained_model.tar
b'Downloaded 186 MB bytes in 0.433s (429 MB/s)\nExtracted 186 MB in 0.050s (3.7 GB/s)\n'
Downloaded weights in 0.6059157848358154 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: charlie and the chocolate factory as a lego set in the style of <s0><s1>
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:13, 3.65it/s]
4%|▍ | 2/50 [00:00<00:13, 3.64it/s]
6%|▌ | 3/50 [00:00<00:12, 3.65it/s]
8%|▊ | 4/50 [00:01<00:12, 3.64it/s]
10%|█ | 5/50 [00:01<00:12, 3.64it/s]
12%|█▏ | 6/50 [00:01<00:12, 3.63it/s]
14%|█▍ | 7/50 [00:01<00:11, 3.63it/s]
16%|█▌ | 8/50 [00:02<00:11, 3.63it/s]
18%|█▊ | 9/50 [00:02<00:11, 3.64it/s]
20%|██ | 10/50 [00:02<00:11, 3.63it/s]
22%|██▏ | 11/50 [00:03<00:10, 3.63it/s]
24%|██▍ | 12/50 [00:03<00:10, 3.63it/s]
26%|██▌ | 13/50 [00:03<00:10, 3.63it/s]
28%|██▊ | 14/50 [00:03<00:09, 3.63it/s]
30%|███ | 15/50 [00:04<00:09, 3.63it/s]
32%|███▏ | 16/50 [00:04<00:09, 3.63it/s]
34%|███▍ | 17/50 [00:04<00:09, 3.63it/s]
36%|███▌ | 18/50 [00:04<00:08, 3.63it/s]
38%|███▊ | 19/50 [00:05<00:08, 3.62it/s]
40%|████ | 20/50 [00:05<00:08, 3.62it/s]
42%|████▏ | 21/50 [00:05<00:08, 3.62it/s]
44%|████▍ | 22/50 [00:06<00:07, 3.62it/s]
46%|████▌ | 23/50 [00:06<00:07, 3.62it/s]
48%|████▊ | 24/50 [00:06<00:07, 3.62it/s]
50%|█████ | 25/50 [00:06<00:06, 3.62it/s]
52%|█████▏ | 26/50 [00:07<00:06, 3.61it/s]
54%|█████▍ | 27/50 [00:07<00:06, 3.61it/s]
56%|█████▌ | 28/50 [00:07<00:06, 3.61it/s]
58%|█████▊ | 29/50 [00:07<00:05, 3.61it/s]
60%|██████ | 30/50 [00:08<00:05, 3.62it/s]
62%|██████▏ | 31/50 [00:08<00:05, 3.62it/s]
64%|██████▍ | 32/50 [00:08<00:04, 3.62it/s]
66%|██████▌ | 33/50 [00:09<00:04, 3.62it/s]
68%|██████▊ | 34/50 [00:09<00:04, 3.61it/s]
70%|███████ | 35/50 [00:09<00:04, 3.61it/s]
72%|███████▏ | 36/50 [00:09<00:03, 3.61it/s]
74%|███████▍ | 37/50 [00:10<00:03, 3.62it/s]
76%|███████▌ | 38/50 [00:10<00:03, 3.61it/s]
78%|███████▊ | 39/50 [00:10<00:03, 3.61it/s]
80%|████████ | 40/50 [00:11<00:02, 3.61it/s]
82%|████████▏ | 41/50 [00:11<00:02, 3.61it/s]
84%|████████▍ | 42/50 [00:11<00:02, 3.61it/s]
86%|████████▌ | 43/50 [00:11<00:01, 3.61it/s]
88%|████████▊ | 44/50 [00:12<00:01, 3.61it/s]
90%|█████████ | 45/50 [00:12<00:01, 3.61it/s]
92%|█████████▏| 46/50 [00:12<00:01, 3.61it/s]
94%|█████████▍| 47/50 [00:12<00:00, 3.61it/s]
96%|█████████▌| 48/50 [00:13<00:00, 3.61it/s]
98%|█████████▊| 49/50 [00:13<00:00, 3.61it/s]
100%|██████████| 50/50 [00:13<00:00, 3.61it/s]
100%|██████████| 50/50 [00:13<00:00, 3.62it/s]