Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
nightmareai /disco-diffusion:bc788225
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nightmareai/disco-diffusion:bc78822513db3dd6fc3be978d68472258b6f86a3a8ebf6aa8c5bc60b66bbae58",
{
input: {
RN50: true,
steps: 100,
width: 1280,
RN50x4: false,
ViTB16: true,
ViTB32: true,
ViTL14: false,
height: 768,
prompt: "A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.",
RN50x16: false,
RN50x64: false,
RN50x101: false,
tv_scale: 0,
sat_scale: 0,
skip_augs: false,
ViTL14_336: false,
init_scale: 1000,
skip_steps: 10,
range_scale: 150,
cutn_batches: 4,
display_rate: 20,
target_scale: 20000,
diffusion_model: "512x512_diffusion_uncond_finetune_008100",
clip_guidance_scale: 5000,
use_secondary_model: true,
diffusion_sampling_mode: "plms"
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nightmareai/disco-diffusion:bc78822513db3dd6fc3be978d68472258b6f86a3a8ebf6aa8c5bc60b66bbae58",
input={
"RN50": True,
"steps": 100,
"width": 1280,
"RN50x4": False,
"ViTB16": True,
"ViTB32": True,
"ViTL14": False,
"height": 768,
"prompt": "A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.",
"RN50x16": False,
"RN50x64": False,
"RN50x101": False,
"tv_scale": 0,
"sat_scale": 0,
"skip_augs": False,
"ViTL14_336": False,
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": True,
"diffusion_sampling_mode": "plms"
}
)
# The nightmareai/disco-diffusion model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/nightmareai/disco-diffusion/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run nightmareai/disco-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "bc78822513db3dd6fc3be978d68472258b6f86a3a8ebf6aa8c5bc60b66bbae58",
"input": {
"RN50": true,
"steps": 100,
"width": 1280,
"RN50x4": false,
"ViTB16": true,
"ViTB32": true,
"ViTL14": false,
"height": 768,
"prompt": "A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.",
"RN50x16": false,
"RN50x64": false,
"RN50x101": false,
"tv_scale": 0,
"sat_scale": 0,
"skip_augs": false,
"ViTL14_336": false,
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": true,
"diffusion_sampling_mode": "plms"
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/nightmareai/disco-diffusion@sha256:bc78822513db3dd6fc3be978d68472258b6f86a3a8ebf6aa8c5bc60b66bbae58 \
-i 'RN50=true' \
-i 'steps=100' \
-i 'width=1280' \
-i 'RN50x4=false' \
-i 'ViTB16=true' \
-i 'ViTB32=true' \
-i 'ViTL14=false' \
-i 'height=768' \
-i 'prompt="A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation."' \
-i 'RN50x16=false' \
-i 'RN50x64=false' \
-i 'RN50x101=false' \
-i 'tv_scale=0' \
-i 'sat_scale=0' \
-i 'skip_augs=false' \
-i 'ViTL14_336=false' \
-i 'init_scale=1000' \
-i 'skip_steps=10' \
-i 'range_scale=150' \
-i 'cutn_batches=4' \
-i 'display_rate=20' \
-i 'target_scale=20000' \
-i 'diffusion_model="512x512_diffusion_uncond_finetune_008100"' \
-i 'clip_guidance_scale=5000' \
-i 'use_secondary_model=true' \
-i 'diffusion_sampling_mode="plms"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/nightmareai/disco-diffusion@sha256:bc78822513db3dd6fc3be978d68472258b6f86a3a8ebf6aa8c5bc60b66bbae58
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "RN50": true, "steps": 100, "width": 1280, "RN50x4": false, "ViTB16": true, "ViTB32": true, "ViTL14": false, "height": 768, "prompt": "A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.", "RN50x16": false, "RN50x64": false, "RN50x101": false, "tv_scale": 0, "sat_scale": 0, "skip_augs": false, "ViTL14_336": false, "init_scale": 1000, "skip_steps": 10, "range_scale": 150, "cutn_batches": 4, "display_rate": 20, "target_scale": 20000, "diffusion_model": "512x512_diffusion_uncond_finetune_008100", "clip_guidance_scale": 5000, "use_secondary_model": true, "diffusion_sampling_mode": "plms" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-07-10T11:00:04.156176Z",
"created_at": "2022-07-10T10:48:48.096392Z",
"data_removed": false,
"error": null,
"id": "m7srykonyvf6ni3v47eob2amqi",
"input": {
"RN50": true,
"steps": 100,
"width": 1280,
"ViTB16": true,
"ViTB32": true,
"height": 768,
"prompt": "A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.",
"init_scale": 1000,
"skip_steps": 10,
"range_scale": 150,
"cutn_batches": 4,
"display_rate": 20,
"target_scale": 20000,
"diffusion_model": "512x512_diffusion_uncond_finetune_008100",
"clip_guidance_scale": 5000,
"use_secondary_model": true,
"diffusion_sampling_mode": "plms"
},
"logs": "2022-07-10 10:53:00.447 | INFO | dd:start_run:2224 - 💼 1 jobs found.\n2022-07-10 10:53:00.448 | INFO | dd:start_run:2236 - ⚒️ Session 53211f30-715a-45e9-99c2-6be3ee8bd590 started...\n2022-07-10 10:53:00.448 | INFO | dd:start_run:2239 - 💼 Processing job 1 of 1...\n2022-07-10 10:53:00.449 | INFO | dd:start_run:2242 - 🌲 Setting TORCH_HOME environment variable to /root/.cache/disco-diffusion...\n2022-07-10 10:53:00.450 | INFO | dd:processBatch:2329 - 🌱 Randomly using seed: 1876651774\n2022-07-10 10:53:00.451 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n2022-07-10 10:53:00.451 | INFO | dd:do_run:1190 - 💻 Starting Run: 6af357b1-11dc-4954-ad45-4f17b3bc1889(0) at frame 0\n2022-07-10 10:53:00.451 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/32'...\n2022-07-10 10:53:08.770 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/16'...\n2022-07-10 10:53:14.198 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'RN50'...\n2022-07-10 10:53:18.328 | INFO | dd:do_run:1216 - 🤖 Loading secondary model...\n2022-07-10 10:53:18.629 | INFO | dd:do_run:1222 - 🤖 Loading LPIPS...\n/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.\n warnings.warn(\n/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.\n warnings.warn(msg)\n\u001b[2K\n2022-07-10 10:53:20.486 | INFO | dd:disco:1502 - timestep_respacing : ddim100 | diffusion_steps: 1000\n2022-07-10 10:53:20.486 | INFO | dd:prepModels:1054 - Prepping models...\n2022-07-10 10:53:35.310 | INFO | dd:disco:1532 - Running job '42093ca4-2d79-44ab-8182-ddbf268da620'...\n2022-07-10 10:53:35.310 | INFO | dd:disco:1545 - 🌱 Seed used: 1876651774\n2022-07-10 10:53:35.321 | INFO | dd:disco:1571 - Frame 0 📝 Prompt: ['A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.']\n\u001b[2K\n\u001b[2K\n\u001b[2K\nBatches: 0%| | 0/1 [00:00<?, ?it/s]\nOutput()\n2022-07-10 10:53:37.281 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n\n\n 0%| | 0/90 [00:00<?, ?it/s]\u001b[A\n\n\nBatch 0, step 0, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45E50>\n 0%| | 0/90 [00:11<?, ?it/s]\u001b[A\n\n 1%| | 1/90 [00:11<17:03, 11.50s/it]\u001b[A\n\n 2%|▏ | 2/90 [00:15<10:10, 6.94s/it]\u001b[A\n\n 3%|▎ | 3/90 [00:19<07:58, 5.50s/it]\u001b[A\n\n 4%|▍ | 4/90 [00:22<06:55, 4.83s/it]\u001b[A\n\n 6%|▌ | 5/90 [00:26<06:18, 4.46s/it]\u001b[A\n\n 7%|▋ | 6/90 [00:30<05:55, 4.23s/it]\u001b[A\n\n 8%|▊ | 7/90 [00:34<05:40, 4.10s/it]\u001b[A\n\n 9%|▉ | 8/90 [00:38<05:29, 4.02s/it]\u001b[A\n\n 10%|█ | 9/90 [00:41<05:21, 3.96s/it]\u001b[A\n\n 11%|█ | 10/90 [00:45<05:14, 3.94s/it]\u001b[A\n\n 12%|█▏ | 11/90 [00:49<05:09, 3.92s/it]\u001b[A\n\n 13%|█▎ | 12/90 [00:53<05:06, 3.93s/it]\u001b[A\n\n 14%|█▍ | 13/90 [00:57<05:02, 3.93s/it]\u001b[A\n\n 16%|█▌ | 14/90 [01:01<04:58, 3.93s/it]\u001b[A\n\n 17%|█▋ | 15/90 [01:05<04:55, 3.94s/it]\u001b[A\n\n 18%|█▊ | 16/90 [01:09<04:52, 3.95s/it]\u001b[A\n\n 19%|█▉ | 17/90 [01:13<04:49, 3.96s/it]\u001b[A\n\n 20%|██ | 18/90 [01:17<04:46, 3.98s/it]\u001b[A\n\n 21%|██ | 19/90 [01:21<04:42, 3.98s/it]\u001b[A\n\n 22%|██▏ | 20/90 [01:25<04:38, 3.98s/it]\u001b[A\n\n\nBatch 0, step 20, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45D60>\n 22%|██▏ | 20/90 [01:29<04:38, 3.98s/it]\u001b[A\n\n 23%|██▎ | 21/90 [01:30<04:48, 4.18s/it]\u001b[A\n\n 24%|██▍ | 22/90 [01:34<04:39, 4.11s/it]\u001b[A\n\n 26%|██▌ | 23/90 [01:37<04:32, 4.07s/it]\u001b[A\n\n 27%|██▋ | 24/90 [01:41<04:26, 4.03s/it]\u001b[A\n\n 28%|██▊ | 25/90 [01:45<04:20, 4.00s/it]\u001b[A\n\n 29%|██▉ | 26/90 [01:49<04:14, 3.98s/it]\u001b[A\n\n 30%|███ | 27/90 [01:53<04:09, 3.97s/it]\u001b[A\n\n 31%|███ | 28/90 [01:57<04:05, 3.96s/it]\u001b[A\n\n 32%|███▏ | 29/90 [02:01<04:00, 3.95s/it]\u001b[A\n\n 33%|███▎ | 30/90 [02:05<03:56, 3.94s/it]\u001b[A\n\n 34%|███▍ | 31/90 [02:09<03:56, 4.02s/it]\u001b[A\n\n 36%|███▌ | 32/90 [02:13<03:55, 4.07s/it]\u001b[A\n\n 37%|███▋ | 33/90 [02:18<03:53, 4.10s/it]\u001b[A\n\n 38%|███▊ | 34/90 [02:22<03:51, 4.14s/it]\u001b[A\n\n 39%|███▉ | 35/90 [02:26<03:49, 4.18s/it]\u001b[A\n\n 40%|████ | 36/90 [02:30<03:46, 4.19s/it]\u001b[A\n\n 41%|████ | 37/90 [02:35<03:43, 4.21s/it]\u001b[A\n\n 42%|████▏ | 38/90 [02:39<03:39, 4.22s/it]\u001b[A\n\n 43%|████▎ | 39/90 [02:43<03:35, 4.23s/it]\u001b[A\n\n 44%|████▍ | 40/90 [02:47<03:31, 4.23s/it]\u001b[A\nBatch 0, step 40, output 0:\n\n\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45DF0>\n 44%|████▍ | 40/90 [02:51<03:31, 4.23s/it]\u001b[A\n\n 46%|████▌ | 41/90 [02:52<03:36, 4.42s/it]\u001b[A\n\n 47%|████▋ | 42/90 [02:56<03:29, 4.36s/it]\u001b[A\n\n 48%|████▊ | 43/90 [03:01<03:22, 4.32s/it]\u001b[A\n\n 49%|████▉ | 44/90 [03:05<03:17, 4.29s/it]\u001b[A\n\n 50%|█████ | 45/90 [03:09<03:12, 4.28s/it]\u001b[A\n\n 51%|█████ | 46/90 [03:13<03:07, 4.27s/it]\u001b[A\n\n 52%|█████▏ | 47/90 [03:18<03:02, 4.26s/it]\u001b[A\n\n 53%|█████▎ | 48/90 [03:22<02:58, 4.24s/it]\u001b[A\n\n 54%|█████▍ | 49/90 [03:26<02:53, 4.24s/it]\u001b[A\n\n 56%|█████▌ | 50/90 [03:30<02:49, 4.23s/it]\u001b[A\n\n 57%|█████▋ | 51/90 [03:34<02:44, 4.22s/it]\u001b[A\n\n 58%|█████▊ | 52/90 [03:39<02:40, 4.22s/it]\u001b[A\n\n 59%|█████▉ | 53/90 [03:43<02:36, 4.22s/it]\u001b[A\n\n 60%|██████ | 54/90 [03:47<02:31, 4.21s/it]\u001b[A\n\n 61%|██████ | 55/90 [03:51<02:27, 4.21s/it]\u001b[A\n\n 62%|██████▏ | 56/90 [03:55<02:23, 4.21s/it]\u001b[A\n\n 63%|██████▎ | 57/90 [04:00<02:19, 4.22s/it]\u001b[A\n\n 64%|██████▍ | 58/90 [04:04<02:14, 4.22s/it]\u001b[A\n\n 66%|██████▌ | 59/90 [04:08<02:10, 4.22s/it]\u001b[A\n\n 67%|██████▋ | 60/90 [04:12<02:06, 4.22s/it]\u001b[A\n\n\nBatch 0, step 60, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45E20>\n 67%|██████▋ | 60/90 [04:17<02:06, 4.22s/it]\u001b[A\n\n 68%|██████▊ | 61/90 [04:17<02:07, 4.40s/it]\u001b[A\n\n 69%|██████▉ | 62/90 [04:21<02:01, 4.35s/it]\u001b[A\n\n 70%|███████ | 63/90 [04:26<01:56, 4.31s/it]\u001b[A\n\n 71%|███████ | 64/90 [04:30<01:51, 4.27s/it]\u001b[A\n\n 72%|███████▏ | 65/90 [04:34<01:46, 4.27s/it]\u001b[A\n\n 73%|███████▎ | 66/90 [04:38<01:41, 4.25s/it]\u001b[A\n\n 74%|███████▍ | 67/90 [04:42<01:37, 4.25s/it]\u001b[A\n\n 76%|███████▌ | 68/90 [04:47<01:33, 4.24s/it]\u001b[A\n\n 77%|███████▋ | 69/90 [04:51<01:29, 4.24s/it]\u001b[A\n\n 78%|███████▊ | 70/90 [04:55<01:24, 4.24s/it]\u001b[A\n\n 79%|███████▉ | 71/90 [04:59<01:20, 4.24s/it]\u001b[A\n\n 80%|████████ | 72/90 [05:04<01:16, 4.23s/it]\u001b[A\n\n 81%|████████ | 73/90 [05:08<01:11, 4.23s/it]\u001b[A\n\n 82%|████████▏ | 74/90 [05:12<01:07, 4.24s/it]\u001b[A\n\n 83%|████████▎ | 75/90 [05:16<01:03, 4.24s/it]\u001b[A\n\n 84%|████████▍ | 76/90 [05:21<00:59, 4.24s/it]\u001b[A\n\n 86%|████████▌ | 77/90 [05:25<00:54, 4.23s/it]\u001b[A\n\n 87%|████████▋ | 78/90 [05:29<00:50, 4.23s/it]\u001b[A\n\n 88%|████████▊ | 79/90 [05:33<00:46, 4.23s/it]\u001b[A\n\n 89%|████████▉ | 80/90 [05:37<00:42, 4.23s/it]\u001b[A\n\n\nBatch 0, step 80, output 0:\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45F10>\n 89%|████████▉ | 80/90 [05:42<00:42, 4.23s/it]\u001b[A\n\n 90%|█████████ | 81/90 [05:42<00:39, 4.38s/it]\u001b[A\n\n 91%|█████████ | 82/90 [05:46<00:34, 4.34s/it]\u001b[A\n\n 92%|█████████▏| 83/90 [05:51<00:30, 4.29s/it]\u001b[A\n\n 93%|█████████▎| 84/90 [05:55<00:25, 4.28s/it]\u001b[A\n\n 94%|█████████▍| 85/90 [05:59<00:21, 4.26s/it]\u001b[A\n\n 96%|█████████▌| 86/90 [06:03<00:17, 4.25s/it]\u001b[A\n\n 97%|█████████▋| 87/90 [06:08<00:12, 4.24s/it]\u001b[A\n\n 98%|█████████▊| 88/90 [06:12<00:08, 4.23s/it]\u001b[A\n\nBatch 0, step 89, output 0:\n 99%|█████████▉| 89/90 [06:16<00:04, 4.24s/it]\u001b[A\n\n\n\u001b[A\n\n\u001b[2K\n\u001b[2K\n<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45D60>\n 99%|█████████▉| 89/90 [06:20<00:04, 4.24s/it]\u001b[A2022-07-10 10:59:58.380 | INFO | dd:disco:1820 - Image render completed.\n2022-07-10 10:59:58.705 | INFO | dd:disco:1840 - Image saved to '/src/images_out/6af357b1-11dc-4954-ad45-4f17b3bc1889/6af357b1-11dc-4954-ad45-4f17b3bc1889(0)_0.png'\n\n\n100%|██████████| 90/90 [06:21<00:00, 4.44s/it]\u001b[A\n100%|██████████| 90/90 [06:21<00:00, 4.24s/it]\n2022-07-10 10:59:58.705 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...\n2022-07-10 10:59:58.706 | SUCCESS | dd:start_run:2245 - ✅ Session 53211f30-715a-45e9-99c2-6be3ee8bd590 finished by user.\n2022-07-10 10:59:58.706 | DEBUG | dd:sendSMS:2530 - Not sending SMS\n2022-07-10 10:59:58.706 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...",
"metrics": {
"predict_time": 423.675935,
"total_time": 676.059784
},
"output": [
"https://replicate.delivery/mgxm/1101ed75-d65e-4a45-959b-048a7debc248/progress.png",
"https://replicate.delivery/mgxm/bc90146f-71a3-4afd-81fd-5995d2e674d7/progress.png",
"https://replicate.delivery/mgxm/3e18da08-f286-472b-b5c3-325b3ee793ac/progress.png",
"https://replicate.delivery/mgxm/120ed27b-2f50-4453-9c41-f317e46dcaa4/progress.png",
"https://replicate.delivery/mgxm/4a98c507-b6a5-43c7-b689-39b7486cd1c0/progress.png",
"https://replicate.delivery/mgxm/c1288e23-2428-43fe-b5a7-6851453826b1/progress.png",
"https://replicate.delivery/mgxm/5800f828-94d5-46a0-9eb2-96b51d7846e3/6af357b1-11dc-4954-ad45-4f17b3bc18890_0.png"
],
"started_at": "2022-07-10T10:53:00.480241Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/m7srykonyvf6ni3v47eob2amqi",
"cancel": "https://api.replicate.com/v1/predictions/m7srykonyvf6ni3v47eob2amqi/cancel"
},
"version": "bc78822513db3dd6fc3be978d68472258b6f86a3a8ebf6aa8c5bc60b66bbae58"
}
2022-07-10 10:53:00.447 | INFO | dd:start_run:2224 - 💼 1 jobs found.
2022-07-10 10:53:00.448 | INFO | dd:start_run:2236 - ⚒️ Session 53211f30-715a-45e9-99c2-6be3ee8bd590 started...
2022-07-10 10:53:00.448 | INFO | dd:start_run:2239 - 💼 Processing job 1 of 1...
2022-07-10 10:53:00.449 | INFO | dd:start_run:2242 - 🌲 Setting TORCH_HOME environment variable to /root/.cache/disco-diffusion...
2022-07-10 10:53:00.450 | INFO | dd:processBatch:2329 - 🌱 Randomly using seed: 1876651774
2022-07-10 10:53:00.451 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
2022-07-10 10:53:00.451 | INFO | dd:do_run:1190 - 💻 Starting Run: 6af357b1-11dc-4954-ad45-4f17b3bc1889(0) at frame 0
2022-07-10 10:53:00.451 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/32'...
2022-07-10 10:53:08.770 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'ViT-B/16'...
2022-07-10 10:53:14.198 | INFO | dd:clipLoad:1182 - 🤖 Loading model 'RN50'...
2022-07-10 10:53:18.328 | INFO | dd:do_run:1216 - 🤖 Loading secondary model...
2022-07-10 10:53:18.629 | INFO | dd:do_run:1222 - 🤖 Loading LPIPS...
/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and will be removed in 0.15, please use 'weights' instead.
warnings.warn(
/root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and will be removed in 0.15. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.
warnings.warn(msg)
2022-07-10 10:53:20.486 | INFO | dd:disco:1502 - timestep_respacing : ddim100 | diffusion_steps: 1000
2022-07-10 10:53:20.486 | INFO | dd:prepModels:1054 - Prepping models...
2022-07-10 10:53:35.310 | INFO | dd:disco:1532 - Running job '42093ca4-2d79-44ab-8182-ddbf268da620'...
2022-07-10 10:53:35.310 | INFO | dd:disco:1545 - 🌱 Seed used: 1876651774
2022-07-10 10:53:35.321 | INFO | dd:disco:1571 - Frame 0 📝 Prompt: ['A beautiful painting of a singular lighthouse, shining its light across a tumultuous sea of blood by greg rutkowski and thomas kinkade, Trending on artstation.']
Batches: 0%| | 0/1 [00:00<?, ?it/s]
Output()
2022-07-10 10:53:37.281 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
0%| | 0/90 [00:00<?, ?it/s]
Batch 0, step 0, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45E50>
0%| | 0/90 [00:11<?, ?it/s]
1%| | 1/90 [00:11<17:03, 11.50s/it]
2%|▏ | 2/90 [00:15<10:10, 6.94s/it]
3%|▎ | 3/90 [00:19<07:58, 5.50s/it]
4%|▍ | 4/90 [00:22<06:55, 4.83s/it]
6%|▌ | 5/90 [00:26<06:18, 4.46s/it]
7%|▋ | 6/90 [00:30<05:55, 4.23s/it]
8%|▊ | 7/90 [00:34<05:40, 4.10s/it]
9%|▉ | 8/90 [00:38<05:29, 4.02s/it]
10%|█ | 9/90 [00:41<05:21, 3.96s/it]
11%|█ | 10/90 [00:45<05:14, 3.94s/it]
12%|█▏ | 11/90 [00:49<05:09, 3.92s/it]
13%|█▎ | 12/90 [00:53<05:06, 3.93s/it]
14%|█▍ | 13/90 [00:57<05:02, 3.93s/it]
16%|█▌ | 14/90 [01:01<04:58, 3.93s/it]
17%|█▋ | 15/90 [01:05<04:55, 3.94s/it]
18%|█▊ | 16/90 [01:09<04:52, 3.95s/it]
19%|█▉ | 17/90 [01:13<04:49, 3.96s/it]
20%|██ | 18/90 [01:17<04:46, 3.98s/it]
21%|██ | 19/90 [01:21<04:42, 3.98s/it]
22%|██▏ | 20/90 [01:25<04:38, 3.98s/it]
Batch 0, step 20, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45D60>
22%|██▏ | 20/90 [01:29<04:38, 3.98s/it]
23%|██▎ | 21/90 [01:30<04:48, 4.18s/it]
24%|██▍ | 22/90 [01:34<04:39, 4.11s/it]
26%|██▌ | 23/90 [01:37<04:32, 4.07s/it]
27%|██▋ | 24/90 [01:41<04:26, 4.03s/it]
28%|██▊ | 25/90 [01:45<04:20, 4.00s/it]
29%|██▉ | 26/90 [01:49<04:14, 3.98s/it]
30%|███ | 27/90 [01:53<04:09, 3.97s/it]
31%|███ | 28/90 [01:57<04:05, 3.96s/it]
32%|███▏ | 29/90 [02:01<04:00, 3.95s/it]
33%|███▎ | 30/90 [02:05<03:56, 3.94s/it]
34%|███▍ | 31/90 [02:09<03:56, 4.02s/it]
36%|███▌ | 32/90 [02:13<03:55, 4.07s/it]
37%|███▋ | 33/90 [02:18<03:53, 4.10s/it]
38%|███▊ | 34/90 [02:22<03:51, 4.14s/it]
39%|███▉ | 35/90 [02:26<03:49, 4.18s/it]
40%|████ | 36/90 [02:30<03:46, 4.19s/it]
41%|████ | 37/90 [02:35<03:43, 4.21s/it]
42%|████▏ | 38/90 [02:39<03:39, 4.22s/it]
43%|████▎ | 39/90 [02:43<03:35, 4.23s/it]
44%|████▍ | 40/90 [02:47<03:31, 4.23s/it]
Batch 0, step 40, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45DF0>
44%|████▍ | 40/90 [02:51<03:31, 4.23s/it]
46%|████▌ | 41/90 [02:52<03:36, 4.42s/it]
47%|████▋ | 42/90 [02:56<03:29, 4.36s/it]
48%|████▊ | 43/90 [03:01<03:22, 4.32s/it]
49%|████▉ | 44/90 [03:05<03:17, 4.29s/it]
50%|█████ | 45/90 [03:09<03:12, 4.28s/it]
51%|█████ | 46/90 [03:13<03:07, 4.27s/it]
52%|█████▏ | 47/90 [03:18<03:02, 4.26s/it]
53%|█████▎ | 48/90 [03:22<02:58, 4.24s/it]
54%|█████▍ | 49/90 [03:26<02:53, 4.24s/it]
56%|█████▌ | 50/90 [03:30<02:49, 4.23s/it]
57%|█████▋ | 51/90 [03:34<02:44, 4.22s/it]
58%|█████▊ | 52/90 [03:39<02:40, 4.22s/it]
59%|█████▉ | 53/90 [03:43<02:36, 4.22s/it]
60%|██████ | 54/90 [03:47<02:31, 4.21s/it]
61%|██████ | 55/90 [03:51<02:27, 4.21s/it]
62%|██████▏ | 56/90 [03:55<02:23, 4.21s/it]
63%|██████▎ | 57/90 [04:00<02:19, 4.22s/it]
64%|██████▍ | 58/90 [04:04<02:14, 4.22s/it]
66%|██████▌ | 59/90 [04:08<02:10, 4.22s/it]
67%|██████▋ | 60/90 [04:12<02:06, 4.22s/it]
Batch 0, step 60, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45E20>
67%|██████▋ | 60/90 [04:17<02:06, 4.22s/it]
68%|██████▊ | 61/90 [04:17<02:07, 4.40s/it]
69%|██████▉ | 62/90 [04:21<02:01, 4.35s/it]
70%|███████ | 63/90 [04:26<01:56, 4.31s/it]
71%|███████ | 64/90 [04:30<01:51, 4.27s/it]
72%|███████▏ | 65/90 [04:34<01:46, 4.27s/it]
73%|███████▎ | 66/90 [04:38<01:41, 4.25s/it]
74%|███████▍ | 67/90 [04:42<01:37, 4.25s/it]
76%|███████▌ | 68/90 [04:47<01:33, 4.24s/it]
77%|███████▋ | 69/90 [04:51<01:29, 4.24s/it]
78%|███████▊ | 70/90 [04:55<01:24, 4.24s/it]
79%|███████▉ | 71/90 [04:59<01:20, 4.24s/it]
80%|████████ | 72/90 [05:04<01:16, 4.23s/it]
81%|████████ | 73/90 [05:08<01:11, 4.23s/it]
82%|████████▏ | 74/90 [05:12<01:07, 4.24s/it]
83%|████████▎ | 75/90 [05:16<01:03, 4.24s/it]
84%|████████▍ | 76/90 [05:21<00:59, 4.24s/it]
86%|████████▌ | 77/90 [05:25<00:54, 4.23s/it]
87%|████████▋ | 78/90 [05:29<00:50, 4.23s/it]
88%|████████▊ | 79/90 [05:33<00:46, 4.23s/it]
89%|████████▉ | 80/90 [05:37<00:42, 4.23s/it]
Batch 0, step 80, output 0:
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45F10>
89%|████████▉ | 80/90 [05:42<00:42, 4.23s/it]
90%|█████████ | 81/90 [05:42<00:39, 4.38s/it]
91%|█████████ | 82/90 [05:46<00:34, 4.34s/it]
92%|█████████▏| 83/90 [05:51<00:30, 4.29s/it]
93%|█████████▎| 84/90 [05:55<00:25, 4.28s/it]
94%|█████████▍| 85/90 [05:59<00:21, 4.26s/it]
96%|█████████▌| 86/90 [06:03<00:17, 4.25s/it]
97%|█████████▋| 87/90 [06:08<00:12, 4.24s/it]
98%|█████████▊| 88/90 [06:12<00:08, 4.23s/it]
Batch 0, step 89, output 0:
99%|█████████▉| 89/90 [06:16<00:04, 4.24s/it]
<PIL.Image.Image image mode=RGB size=1280x768 at 0x7F4BB3E45D60>
99%|█████████▉| 89/90 [06:20<00:04, 4.24s/it]2022-07-10 10:59:58.380 | INFO | dd:disco:1820 - Image render completed.
2022-07-10 10:59:58.705 | INFO | dd:disco:1840 - Image saved to '/src/images_out/6af357b1-11dc-4954-ad45-4f17b3bc1889/6af357b1-11dc-4954-ad45-4f17b3bc1889(0)_0.png'
100%|██████████| 90/90 [06:21<00:00, 4.44s/it]
100%|██████████| 90/90 [06:21<00:00, 4.24s/it]
2022-07-10 10:59:58.705 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...
2022-07-10 10:59:58.706 | SUCCESS | dd:start_run:2245 - ✅ Session 53211f30-715a-45e9-99c2-6be3ee8bd590 finished by user.
2022-07-10 10:59:58.706 | DEBUG | dd:sendSMS:2530 - Not sending SMS
2022-07-10 10:59:58.706 | INFO | dd:free_mem:71 - Clearing CUDA cache on cuda:0...