Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
nightmareai /majesty-diffusion:76f01b26
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run nightmareai/majesty-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"nightmareai/majesty-diffusion:76f01b269da5b6f12d201700e3e7d253b7decefe4d9d8ae9417df5977f63fb8d",
{
input: {
model: "finetuned",
width: 640,
height: 768,
clip_scale: 16000,
init_scale: 1000,
clip_prompts: "The visual style of the image is akin to a retro 8-bit look, with clean lines and flat colors. There is a cartoonish quality to some of the characters and objects, as if they are depictions of vaporwave tropes or influences.",
latent_scale: 12,
output_steps: 10,
latent_prompt: "vaporwave princess",
custom_settings: "\n",
init_brightness: 0,
latent_negative: "",
starting_timestep: 0.9,
aesthetic_loss_scale: 400
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run nightmareai/majesty-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"nightmareai/majesty-diffusion:76f01b269da5b6f12d201700e3e7d253b7decefe4d9d8ae9417df5977f63fb8d",
input={
"model": "finetuned",
"width": 640,
"height": 768,
"clip_scale": 16000,
"init_scale": 1000,
"clip_prompts": "The visual style of the image is akin to a retro 8-bit look, with clean lines and flat colors. There is a cartoonish quality to some of the characters and objects, as if they are depictions of vaporwave tropes or influences.",
"latent_scale": 12,
"output_steps": 10,
"latent_prompt": "vaporwave princess",
"custom_settings": "\n",
"init_brightness": 0,
"latent_negative": "",
"starting_timestep": 0.9,
"aesthetic_loss_scale": 400
}
)
# The nightmareai/majesty-diffusion model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/nightmareai/majesty-diffusion/api#output-schema
print(item)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run nightmareai/majesty-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "76f01b269da5b6f12d201700e3e7d253b7decefe4d9d8ae9417df5977f63fb8d",
"input": {
"model": "finetuned",
"width": 640,
"height": 768,
"clip_scale": 16000,
"init_scale": 1000,
"clip_prompts": "The visual style of the image is akin to a retro 8-bit look, with clean lines and flat colors. There is a cartoonish quality to some of the characters and objects, as if they are depictions of vaporwave tropes or influences.",
"latent_scale": 12,
"output_steps": 10,
"latent_prompt": "vaporwave princess",
"custom_settings": "\\n",
"init_brightness": 0,
"latent_negative": "",
"starting_timestep": 0.9,
"aesthetic_loss_scale": 400
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-07-26T15:06:02.303289Z",
"created_at": "2022-07-26T15:01:50.303671Z",
"data_removed": false,
"error": null,
"id": "ziyebr5lqvagdfrkzwqeaoxahy",
"input": {
"width": 640,
"height": 768,
"clip_scale": 16000,
"clip_prompts": "The visual style of the image is akin to a retro 8-bit look, with clean lines and flat colors. There is a cartoonish quality to some of the characters and objects, as if they are depictions of vaporwave tropes or influences.",
"latent_scale": 12,
"latent_prompt": "vaporwave princess",
"aesthetic_loss_scale": 400
},
"logs": "Sampling images 1/1\n\nData shape for DDIM sampling is (1, 4, 48, 40), eta 1.3\nRunning DDIM Sampling with 119 timesteps\nSampling: 0%| | 0/1 [00:00<?, ?it/s]\n\nDDIM Sampler: 0%| | 0/119 [00:00<?, ?it/s]\u001b[A\n\nDDIM Sampler: 1%| | 1/119 [00:11<22:48, 11.59s/it]\u001b[A\n\nDDIM Sampler: 2%|▏ | 2/119 [00:12<10:03, 5.16s/it]\u001b[A\n\nDDIM Sampler: 3%|▎ | 3/119 [00:12<05:59, 3.10s/it]\u001b[A\n\nDDIM Sampler: 3%|▎ | 4/119 [00:13<04:04, 2.13s/it]\u001b[A\n\nDDIM Sampler: 4%|▍ | 5/119 [00:14<03:00, 1.58s/it]\u001b[A\n\nDDIM Sampler: 5%|▌ | 6/119 [00:14<02:23, 1.27s/it]\u001b[A\n\nDDIM Sampler: 6%|▌ | 7/119 [00:15<01:59, 1.07s/it]\u001b[A\n\nDDIM Sampler: 7%|▋ | 8/119 [00:16<01:43, 1.07it/s]\u001b[A\n\nDDIM Sampler: 8%|▊ | 9/119 [00:16<01:31, 1.21it/s]\u001b[A\n\nDDIM Sampler: 8%|▊ | 10/119 [00:17<01:23, 1.30it/s]\u001b[A\n\nDDIM Sampler: 9%|▉ | 11/119 [00:17<01:18, 1.37it/s]\u001b[A\n\nDDIM Sampler: 10%|█ | 12/119 [00:18<01:15, 1.42it/s]\u001b[A\n\nDDIM Sampler: 11%|█ | 13/119 [00:19<01:12, 1.47it/s]\u001b[A\n\nDDIM Sampler: 12%|█▏ | 14/119 [00:19<01:10, 1.49it/s]\u001b[A\n\nDDIM Sampler: 13%|█▎ | 15/119 [00:20<01:08, 1.52it/s]\u001b[A\n\nDDIM Sampler: 13%|█▎ | 16/119 [00:21<01:06, 1.55it/s]\u001b[A\n\nDDIM Sampler: 14%|█▍ | 17/119 [00:21<01:05, 1.55it/s]\u001b[A\n\nDDIM Sampler: 15%|█▌ | 18/119 [00:22<01:04, 1.56it/s]\u001b[A\n\nDDIM Sampler: 16%|█▌ | 19/119 [00:23<01:03, 1.57it/s]\u001b[A\n\nDDIM Sampler: 17%|█▋ | 20/119 [00:23<01:02, 1.57it/s]\u001b[A\n\nDDIM Sampler: 18%|█▊ | 21/119 [00:24<01:02, 1.57it/s]\u001b[A\n\nDDIM Sampler: 18%|█▊ | 22/119 [00:24<01:02, 1.56it/s]\u001b[A\n\nDDIM Sampler: 19%|█▉ | 23/119 [00:25<01:01, 1.57it/s]\u001b[A\n\nDDIM Sampler: 20%|██ | 24/119 [00:26<01:00, 1.57it/s]\u001b[A\n\nDDIM Sampler: 21%|██ | 25/119 [00:26<00:59, 1.57it/s]\u001b[A\n\nDDIM Sampler: 22%|██▏ | 26/119 [00:27<00:59, 1.57it/s]\u001b[A\n\nDDIM Sampler: 23%|██▎ | 27/119 [00:28<00:58, 1.57it/s]\u001b[A\n\nDDIM Sampler: 24%|██▎ | 28/119 [00:28<00:57, 1.59it/s]\u001b[A\n\nDDIM Sampler: 24%|██▍ | 29/119 [00:29<00:56, 1.60it/s]\u001b[A\n\nDDIM Sampler: 25%|██▌ | 30/119 [00:29<00:55, 1.61it/s]\u001b[A\n\nDDIM Sampler: 26%|██▌ | 31/119 [00:30<00:54, 1.61it/s]\u001b[A\n\nDDIM Sampler: 27%|██▋ | 32/119 [00:31<00:53, 1.62it/s]\u001b[A\n\nDDIM Sampler: 28%|██▊ | 33/119 [00:31<00:52, 1.63it/s]\u001b[A\n\nDDIM Sampler: 29%|██▊ | 34/119 [00:32<00:51, 1.64it/s]\u001b[A\n\nDDIM Sampler: 29%|██▉ | 35/119 [00:33<00:50, 1.65it/s]\u001b[A\n\nDDIM Sampler: 30%|███ | 36/119 [00:33<00:50, 1.65it/s]\u001b[A\n\nDDIM Sampler: 31%|███ | 37/119 [00:34<00:49, 1.65it/s]\u001b[A\n\nDDIM Sampler: 32%|███▏ | 38/119 [00:34<00:49, 1.65it/s]\u001b[A\n\nDDIM Sampler: 33%|███▎ | 39/119 [00:35<00:48, 1.64it/s]\u001b[A\n\nDDIM Sampler: 34%|███▎ | 40/119 [00:36<00:48, 1.64it/s]\u001b[A\n\nDDIM Sampler: 34%|███▍ | 41/119 [00:36<00:47, 1.63it/s]\u001b[A\n\nDDIM Sampler: 35%|███▌ | 42/119 [00:37<00:47, 1.62it/s]\u001b[A\n\nDDIM Sampler: 36%|███▌ | 43/119 [00:37<00:47, 1.59it/s]\u001b[A\n\nDDIM Sampler: 37%|███▋ | 44/119 [00:38<00:47, 1.58it/s]\u001b[A\n\nDDIM Sampler: 38%|███▊ | 45/119 [00:39<00:47, 1.57it/s]\u001b[A\n\nDDIM Sampler: 39%|███▊ | 46/119 [00:39<00:46, 1.57it/s]\u001b[A\n\nDDIM Sampler: 39%|███▉ | 47/119 [00:40<00:45, 1.58it/s]\u001b[A\n\nDDIM Sampler: 40%|████ | 48/119 [00:41<00:44, 1.58it/s]\u001b[A\n\nDDIM Sampler: 41%|████ | 49/119 [00:41<00:44, 1.58it/s]\u001b[A\n\nDDIM Sampler: 42%|████▏ | 50/119 [00:42<00:43, 1.58it/s]\u001b[A\n\nDDIM Sampler: 43%|████▎ | 51/119 [00:43<00:42, 1.58it/s]\u001b[A\n\nDDIM Sampler: 44%|████▎ | 52/119 [00:43<00:42, 1.58it/s]\u001b[A\n\nDDIM Sampler: 45%|████▍ | 53/119 [00:44<00:41, 1.58it/s]\u001b[A\n\nDDIM Sampler: 45%|████▌ | 54/119 [00:44<00:41, 1.57it/s]\u001b[A\n\nDDIM Sampler: 46%|████▌ | 55/119 [00:45<00:40, 1.58it/s]\u001b[A\n\nDDIM Sampler: 47%|████▋ | 56/119 [00:46<00:39, 1.58it/s]\u001b[A\n\nDDIM Sampler: 48%|████▊ | 57/119 [00:46<00:39, 1.58it/s]\u001b[A\n\nDDIM Sampler: 49%|████▊ | 58/119 [00:47<00:38, 1.58it/s]\u001b[A\n\nDDIM Sampler: 50%|████▉ | 59/119 [00:48<00:37, 1.58it/s]\u001b[A\n\nDDIM Sampler: 50%|█████ | 60/119 [00:48<00:37, 1.57it/s]\u001b[A\n\nDDIM Sampler: 51%|█████▏ | 61/119 [00:49<00:36, 1.58it/s]\u001b[A\n\nDDIM Sampler: 52%|█████▏ | 62/119 [00:50<00:36, 1.57it/s]\u001b[A\n\nDDIM Sampler: 53%|█████▎ | 63/119 [00:50<00:36, 1.55it/s]\u001b[A\n\nDDIM Sampler: 54%|█████▍ | 64/119 [00:51<00:35, 1.54it/s]\u001b[A\n\nDDIM Sampler: 55%|█████▍ | 65/119 [00:52<00:35, 1.53it/s]\u001b[A\n\nDDIM Sampler: 55%|█████▌ | 66/119 [00:52<00:34, 1.53it/s]\u001b[A\n\nDDIM Sampler: 56%|█████▋ | 67/119 [00:53<00:34, 1.52it/s]\u001b[A\n\nDDIM Sampler: 57%|█████▋ | 68/119 [00:54<00:33, 1.52it/s]\u001b[A\n\nDDIM Sampler: 58%|█████▊ | 69/119 [00:54<00:33, 1.51it/s]\u001b[A\n\nDDIM Sampler: 59%|█████▉ | 70/119 [00:55<00:32, 1.51it/s]\u001b[A\n\nDDIM Sampler: 60%|█████▉ | 71/119 [00:55<00:31, 1.51it/s]\u001b[A\n\nDDIM Sampler: 61%|██████ | 72/119 [00:56<00:31, 1.51it/s]\u001b[A\n\nDDIM Sampler: 61%|██████▏ | 73/119 [00:57<00:30, 1.51it/s]\u001b[A\n\nDDIM Sampler: 62%|██████▏ | 74/119 [00:57<00:29, 1.51it/s]\u001b[A\n\nDDIM Sampler: 63%|██████▎ | 75/119 [00:58<00:29, 1.51it/s]\u001b[A\n\nDDIM Sampler: 64%|██████▍ | 76/119 [00:59<00:28, 1.51it/s]\u001b[A\n\nDDIM Sampler: 65%|██████▍ | 77/119 [00:59<00:27, 1.51it/s]\u001b[A\n\nDDIM Sampler: 66%|██████▌ | 78/119 [01:00<00:27, 1.51it/s]\u001b[A\n\nDDIM Sampler: 66%|██████▋ | 79/119 [01:01<00:26, 1.51it/s]\u001b[A\n\nDDIM Sampler: 67%|██████▋ | 80/119 [01:01<00:25, 1.50it/s]\u001b[A\n\nDDIM Sampler: 68%|██████▊ | 81/119 [01:02<00:25, 1.50it/s]\u001b[A\n\nDDIM Sampler: 69%|██████▉ | 82/119 [01:03<00:24, 1.50it/s]\u001b[A\n\nDDIM Sampler: 70%|██████▉ | 83/119 [01:03<00:23, 1.50it/s]\u001b[A\n\nDDIM Sampler: 71%|███████ | 84/119 [01:04<00:23, 1.50it/s]\u001b[A\n\nDDIM Sampler: 71%|███████▏ | 85/119 [01:05<00:22, 1.50it/s]\u001b[A\n\nDDIM Sampler: 72%|███████▏ | 86/119 [01:05<00:22, 1.49it/s]\u001b[A\n\nDDIM Sampler: 73%|███████▎ | 87/119 [01:06<00:21, 1.49it/s]\u001b[A\n\nDDIM Sampler: 74%|███████▍ | 88/119 [01:07<00:20, 1.49it/s]\u001b[A\n\nDDIM Sampler: 75%|███████▍ | 89/119 [01:07<00:20, 1.50it/s]\u001b[A\n\nDDIM Sampler: 76%|███████▌ | 90/119 [01:08<00:19, 1.50it/s]\u001b[A\n\nDDIM Sampler: 76%|███████▋ | 91/119 [01:09<00:18, 1.49it/s]\u001b[A\n\nDDIM Sampler: 77%|███████▋ | 92/119 [01:10<00:18, 1.49it/s]\u001b[A\n\nDDIM Sampler: 78%|███████▊ | 93/119 [01:10<00:17, 1.49it/s]\u001b[A\n\nDDIM Sampler: 79%|███████▉ | 94/119 [01:11<00:16, 1.49it/s]\u001b[A\n\nDDIM Sampler: 80%|███████▉ | 95/119 [01:12<00:16, 1.49it/s]\u001b[A\n\nDDIM Sampler: 81%|████████ | 96/119 [01:12<00:15, 1.49it/s]\u001b[A\n\nDDIM Sampler: 82%|████████▏ | 97/119 [01:13<00:14, 1.48it/s]\u001b[A\n\nDDIM Sampler: 82%|████████▏ | 98/119 [01:14<00:14, 1.49it/s]\u001b[A\n\nDDIM Sampler: 83%|████████▎ | 99/119 [01:14<00:13, 1.48it/s]\u001b[A\n\nDDIM Sampler: 84%|████████▍ | 100/119 [01:15<00:12, 1.49it/s]\u001b[A\n\nDDIM Sampler: 85%|████████▍ | 101/119 [01:16<00:12, 1.49it/s]\u001b[A\n\nDDIM Sampler: 86%|████████▌ | 102/119 [01:16<00:11, 1.50it/s]\u001b[A\n\nDDIM Sampler: 87%|████████▋ | 103/119 [01:17<00:10, 1.50it/s]\u001b[A\n\nDDIM Sampler: 87%|████████▋ | 104/119 [01:18<00:10, 1.49it/s]\u001b[A\n\nDDIM Sampler: 88%|████████▊ | 105/119 [01:18<00:09, 1.50it/s]\u001b[A\n\nDDIM Sampler: 89%|████████▉ | 106/119 [01:19<00:08, 1.51it/s]\u001b[A\n\nDDIM Sampler: 90%|████████▉ | 107/119 [01:20<00:07, 1.51it/s]\u001b[A\n\nDDIM Sampler: 91%|█████████ | 108/119 [01:20<00:07, 1.51it/s]\u001b[A\n\nDDIM Sampler: 92%|█████████▏| 109/119 [01:21<00:06, 1.51it/s]\u001b[A\n\nDDIM Sampler: 92%|█████████▏| 110/119 [01:22<00:05, 1.51it/s]\u001b[A\n\nDDIM Sampler: 93%|█████████▎| 111/119 [01:22<00:05, 1.51it/s]\u001b[A\n\nDDIM Sampler: 94%|█████████▍| 112/119 [01:23<00:04, 1.50it/s]\u001b[A\n\nDDIM Sampler: 95%|█████████▍| 113/119 [01:24<00:03, 1.51it/s]\u001b[A\n\nDDIM Sampler: 96%|█████████▌| 114/119 [01:24<00:03, 1.51it/s]\u001b[A\n\nDDIM Sampler: 97%|█████████▋| 115/119 [01:25<00:02, 1.51it/s]\u001b[A\n\nDDIM Sampler: 97%|█████████▋| 116/119 [01:25<00:01, 1.51it/s]\u001b[A\n\nDDIM Sampler: 98%|█████████▊| 117/119 [01:26<00:01, 1.51it/s]\u001b[A\n\nDDIM Sampler: 99%|█████████▉| 118/119 [01:27<00:00, 1.51it/s]\u001b[A\n\nDDIM Sampler: 100%|██████████| 119/119 [01:27<00:00, 1.51it/s]\u001b[A\nDDIM Sampler: 100%|██████████| 119/119 [01:27<00:00, 1.35it/s]\npython inference_gfpgan.py -i /tmp/tmprqvpx06_gfpgan/temp_1658847856.png -o results -v 1.3 -s 2\n\nhuggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...\nTo disable this warning, you can either:\n\t- Avoid using `tokenizers` before the fork if possible\n\t- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)\nDownloading: \"https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth\" to /root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/realesrgan/weights/RealESRGAN_x2plus.pth\n\n\n 0%| | 0.00/64.0M [00:00<?, ?B/s]\n 16%|█▌ | 10.1M/64.0M [00:00<00:00, 106MB/s]\n 58%|█████▊ | 37.1M/64.0M [00:00<00:00, 210MB/s]\n100%|█████████▉| 63.8M/64.0M [00:00<00:00, 242MB/s]\n100%|██████████| 64.0M/64.0M [00:00<00:00, 223MB/s]\nProcessing temp_1658847856.png ...\n\tTile 1/1\nResults are in the [results] folder.\nData shape for DDIM sampling is (1, 4, 48, 40), eta 1.1\nRunning DDIM Sampling with 74 timesteps\n\n\nDDIM Sampler: 0%| | 0/74 [00:00<?, ?it/s]\u001b[A\n\nDDIM Sampler: 1%|▏ | 1/74 [00:09<11:30, 9.46s/it]\u001b[A\n\nDDIM Sampler: 3%|▎ | 2/74 [00:10<05:25, 4.53s/it]\u001b[A\n\nDDIM Sampler: 4%|▍ | 3/74 [00:11<03:29, 2.95s/it]\u001b[A\n\nDDIM Sampler: 5%|▌ | 4/74 [00:12<02:34, 2.21s/it]\u001b[A\n\nDDIM Sampler: 7%|▋ | 5/74 [00:13<02:04, 1.80s/it]\u001b[A\n\nDDIM Sampler: 8%|▊ | 6/74 [00:14<01:45, 1.55s/it]\u001b[A\n\nDDIM Sampler: 9%|▉ | 7/74 [00:15<01:33, 1.40s/it]\u001b[A\n\nDDIM Sampler: 11%|█ | 8/74 [00:16<01:25, 1.30s/it]\u001b[A\n\nDDIM Sampler: 12%|█▏ | 9/74 [00:18<01:19, 1.23s/it]\u001b[A\n\nDDIM Sampler: 14%|█▎ | 10/74 [00:19<01:15, 1.18s/it]\u001b[A\n\nDDIM Sampler: 15%|█▍ | 11/74 [00:20<01:12, 1.14s/it]\u001b[A\n\nDDIM Sampler: 16%|█▌ | 12/74 [00:21<01:09, 1.12s/it]\u001b[A\n\nDDIM Sampler: 18%|█▊ | 13/74 [00:22<01:07, 1.11s/it]\u001b[A\n\nDDIM Sampler: 19%|█▉ | 14/74 [00:23<01:05, 1.10s/it]\u001b[A\n\nDDIM Sampler: 20%|██ | 15/74 [00:24<01:04, 1.09s/it]\u001b[A\n\nDDIM Sampler: 22%|██▏ | 16/74 [00:25<01:02, 1.08s/it]\u001b[A\n\nDDIM Sampler: 23%|██▎ | 17/74 [00:26<01:01, 1.08s/it]\u001b[A\n\nDDIM Sampler: 24%|██▍ | 18/74 [00:27<01:00, 1.08s/it]\u001b[A\n\nDDIM Sampler: 26%|██▌ | 19/74 [00:28<00:59, 1.08s/it]\u001b[A\n\nDDIM Sampler: 27%|██▋ | 20/74 [00:29<00:58, 1.08s/it]\u001b[A\n\nDDIM Sampler: 28%|██▊ | 21/74 [00:30<00:56, 1.07s/it]\u001b[A\n\nDDIM Sampler: 30%|██▉ | 22/74 [00:31<00:56, 1.08s/it]\u001b[A\n\nDDIM Sampler: 31%|███ | 23/74 [00:33<00:54, 1.08s/it]\u001b[A\n\nDDIM Sampler: 32%|███▏ | 24/74 [00:34<00:53, 1.07s/it]\u001b[A\n\nDDIM Sampler: 34%|███▍ | 25/74 [00:35<00:52, 1.07s/it]\u001b[A\n\nDDIM Sampler: 35%|███▌ | 26/74 [00:36<00:51, 1.07s/it]\u001b[A\n\nDDIM Sampler: 36%|███▋ | 27/74 [00:37<00:50, 1.07s/it]\u001b[A\n\nDDIM Sampler: 38%|███▊ | 28/74 [00:38<00:49, 1.07s/it]\u001b[A\n\nDDIM Sampler: 39%|███▉ | 29/74 [00:39<00:48, 1.07s/it]\u001b[A\n\nDDIM Sampler: 41%|████ | 30/74 [00:40<00:47, 1.07s/it]\u001b[A\n\nDDIM Sampler: 42%|████▏ | 31/74 [00:41<00:46, 1.07s/it]\u001b[A\n\nDDIM Sampler: 43%|████▎ | 32/74 [00:42<00:45, 1.08s/it]\u001b[A\n\nDDIM Sampler: 45%|████▍ | 33/74 [00:43<00:44, 1.08s/it]\u001b[A\n\nDDIM Sampler: 46%|████▌ | 34/74 [00:44<00:42, 1.07s/it]\u001b[A\n\nDDIM Sampler: 47%|████▋ | 35/74 [00:45<00:41, 1.08s/it]\u001b[A\n\nDDIM Sampler: 49%|████▊ | 36/74 [00:46<00:40, 1.07s/it]\u001b[A\n\nDDIM Sampler: 50%|█████ | 37/74 [00:48<00:39, 1.08s/it]\u001b[A\n\nDDIM Sampler: 51%|█████▏ | 38/74 [00:49<00:38, 1.08s/it]\u001b[A\n\nDDIM Sampler: 53%|█████▎ | 39/74 [00:50<00:37, 1.08s/it]\u001b[A\n\nDDIM Sampler: 54%|█████▍ | 40/74 [00:51<00:36, 1.08s/it]\u001b[A\n\nDDIM Sampler: 55%|█████▌ | 41/74 [00:52<00:35, 1.09s/it]\u001b[A\n\nDDIM Sampler: 57%|█████▋ | 42/74 [00:53<00:34, 1.09s/it]\u001b[A\n\nDDIM Sampler: 58%|█████▊ | 43/74 [00:54<00:33, 1.09s/it]\u001b[A\n\nDDIM Sampler: 59%|█████▉ | 44/74 [00:55<00:32, 1.09s/it]\u001b[A\n\nDDIM Sampler: 61%|██████ | 45/74 [00:56<00:31, 1.09s/it]\u001b[A\n\nDDIM Sampler: 62%|██████▏ | 46/74 [00:57<00:30, 1.09s/it]\u001b[A\n\nDDIM Sampler: 64%|██████▎ | 47/74 [00:58<00:29, 1.09s/it]\u001b[A\n\nDDIM Sampler: 65%|██████▍ | 48/74 [01:00<00:28, 1.10s/it]\u001b[A\n\nDDIM Sampler: 66%|██████▌ | 49/74 [01:01<00:27, 1.10s/it]\u001b[A\n\nDDIM Sampler: 68%|██████▊ | 50/74 [01:02<00:26, 1.10s/it]\u001b[A\n\nDDIM Sampler: 69%|██████▉ | 51/74 [01:03<00:25, 1.10s/it]\u001b[A\n\nDDIM Sampler: 70%|███████ | 52/74 [01:04<00:24, 1.10s/it]\u001b[A\n\nDDIM Sampler: 72%|███████▏ | 53/74 [01:05<00:23, 1.10s/it]\u001b[A\n\nDDIM Sampler: 73%|███████▎ | 54/74 [01:06<00:22, 1.10s/it]\u001b[A\n\nDDIM Sampler: 74%|███████▍ | 55/74 [01:07<00:20, 1.10s/it]\u001b[A\n\nDDIM Sampler: 76%|███████▌ | 56/74 [01:08<00:19, 1.10s/it]\u001b[A\n\nDDIM Sampler: 77%|███████▋ | 57/74 [01:09<00:18, 1.10s/it]\u001b[A\n\nDDIM Sampler: 78%|███████▊ | 58/74 [01:11<00:17, 1.10s/it]\u001b[A\n\nDDIM Sampler: 80%|███████▉ | 59/74 [01:12<00:16, 1.10s/it]\u001b[A\n\nDDIM Sampler: 81%|████████ | 60/74 [01:13<00:15, 1.10s/it]\u001b[A\n\nDDIM Sampler: 82%|████████▏ | 61/74 [01:14<00:14, 1.10s/it]\u001b[A\n\nDDIM Sampler: 84%|████████▍ | 62/74 [01:15<00:13, 1.10s/it]\u001b[A\n\nDDIM Sampler: 85%|████████▌ | 63/74 [01:16<00:12, 1.10s/it]\u001b[A\n\nDDIM Sampler: 86%|████████▋ | 64/74 [01:17<00:11, 1.10s/it]\u001b[A\n\nDDIM Sampler: 88%|████████▊ | 65/74 [01:18<00:09, 1.10s/it]\u001b[A\n\nDDIM Sampler: 89%|████████▉ | 66/74 [01:19<00:08, 1.10s/it]\u001b[A\n\nDDIM Sampler: 91%|█████████ | 67/74 [01:21<00:07, 1.10s/it]\u001b[A\n\nDDIM Sampler: 92%|█████████▏| 68/74 [01:22<00:06, 1.10s/it]\u001b[A\n\nDDIM Sampler: 93%|█████████▎| 69/74 [01:23<00:05, 1.10s/it]\u001b[A\n\nDDIM Sampler: 95%|█████████▍| 70/74 [01:24<00:04, 1.10s/it]\u001b[A\n\nDDIM Sampler: 96%|█████████▌| 71/74 [01:25<00:03, 1.11s/it]\u001b[A\n\nDDIM Sampler: 97%|█████████▋| 72/74 [01:26<00:02, 1.11s/it]\u001b[A\n\nDDIM Sampler: 99%|█████████▊| 73/74 [01:27<00:01, 1.11s/it]\u001b[A\n\nDDIM Sampler: 100%|██████████| 74/74 [01:28<00:00, 1.11s/it]\u001b[A\nDDIM Sampler: 100%|██████████| 74/74 [01:28<00:00, 1.20s/it]\n\nSampling: 100%|██████████| 1/1 [03:14<00:00, 194.40s/it]\nSampling: 100%|██████████| 1/1 [03:14<00:00, 194.40s/it]",
"metrics": {
"predict_time": 195.271336,
"total_time": 251.999618
},
"output": [
"https://replicate.delivery/mgxm/05c51477-135f-4bf5-8347-71ef182e444f/0.png",
"https://replicate.delivery/mgxm/44c843b4-c91a-43a2-a34a-82413ae01556/10.png",
"https://replicate.delivery/mgxm/465b41cb-ace8-4f2b-ac33-b18205ad8b47/20.png",
"https://replicate.delivery/mgxm/2e55d006-9e01-4f96-a55b-7b8f7a51a405/30.png",
"https://replicate.delivery/mgxm/ec799994-5cf9-45a4-a5da-0dc8492dbc21/40.png",
"https://replicate.delivery/mgxm/892673a8-30c1-4de3-81d2-817d43c23c85/50.png",
"https://replicate.delivery/mgxm/7a9a13c5-f575-445f-a967-8e7d93805ea9/60.png",
"https://replicate.delivery/mgxm/83afa9a1-df65-4306-b9f3-e0060b507e50/70.png",
"https://replicate.delivery/mgxm/5475a2e9-f8df-4575-b3d9-27d2845c1767/80.png",
"https://replicate.delivery/mgxm/e48ab18e-7a1e-42ec-baa4-405e5ca13a18/90.png",
"https://replicate.delivery/mgxm/390bd57f-94e2-4070-97cb-1d0371878cc8/100.png",
"https://replicate.delivery/mgxm/791567d3-e994-45ab-afdc-56aa8c73e601/110.png",
"https://replicate.delivery/mgxm/5a8297cd-2da5-463d-8e30-a36dc3d8b97a/120.png",
"https://replicate.delivery/mgxm/9326daeb-8302-4d88-872d-3a12e4c82c7a/130.png",
"https://replicate.delivery/mgxm/b995b6b5-e030-4c1b-906f-786d6379b699/140.png",
"https://replicate.delivery/mgxm/c75d995c-3234-4281-b9bd-67efac64f484/150.png",
"https://replicate.delivery/mgxm/4de3c739-de10-4c99-9d28-eec0c5cffc0a/160.png",
"https://replicate.delivery/mgxm/6fbde938-897a-4d32-9390-0f05873de607/170.png",
"https://replicate.delivery/mgxm/2ce0cb66-ff04-4c00-8090-b991a0342059/180.png",
"https://replicate.delivery/mgxm/5d538fbb-a119-4a13-9d4f-ebde6bee3ed3/190.png",
"https://replicate.delivery/mgxm/b95b22ef-54d0-4248-94ef-268635aac529/1658847957.png"
],
"started_at": "2022-07-26T15:02:47.031953Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/ziyebr5lqvagdfrkzwqeaoxahy",
"cancel": "https://api.replicate.com/v1/predictions/ziyebr5lqvagdfrkzwqeaoxahy/cancel"
},
"version": "73bfb38ec5c159e3dcbe2dc69d2db245c1cc07a94377829c49dded3a7ddb7e3a"
}
Sampling images 1/1
Data shape for DDIM sampling is (1, 4, 48, 40), eta 1.3
Running DDIM Sampling with 119 timesteps
Sampling: 0%| | 0/1 [00:00<?, ?it/s]
DDIM Sampler: 0%| | 0/119 [00:00<?, ?it/s]
DDIM Sampler: 1%| | 1/119 [00:11<22:48, 11.59s/it]
DDIM Sampler: 2%|▏ | 2/119 [00:12<10:03, 5.16s/it]
DDIM Sampler: 3%|▎ | 3/119 [00:12<05:59, 3.10s/it]
DDIM Sampler: 3%|▎ | 4/119 [00:13<04:04, 2.13s/it]
DDIM Sampler: 4%|▍ | 5/119 [00:14<03:00, 1.58s/it]
DDIM Sampler: 5%|▌ | 6/119 [00:14<02:23, 1.27s/it]
DDIM Sampler: 6%|▌ | 7/119 [00:15<01:59, 1.07s/it]
DDIM Sampler: 7%|▋ | 8/119 [00:16<01:43, 1.07it/s]
DDIM Sampler: 8%|▊ | 9/119 [00:16<01:31, 1.21it/s]
DDIM Sampler: 8%|▊ | 10/119 [00:17<01:23, 1.30it/s]
DDIM Sampler: 9%|▉ | 11/119 [00:17<01:18, 1.37it/s]
DDIM Sampler: 10%|█ | 12/119 [00:18<01:15, 1.42it/s]
DDIM Sampler: 11%|█ | 13/119 [00:19<01:12, 1.47it/s]
DDIM Sampler: 12%|█▏ | 14/119 [00:19<01:10, 1.49it/s]
DDIM Sampler: 13%|█▎ | 15/119 [00:20<01:08, 1.52it/s]
DDIM Sampler: 13%|█▎ | 16/119 [00:21<01:06, 1.55it/s]
DDIM Sampler: 14%|█▍ | 17/119 [00:21<01:05, 1.55it/s]
DDIM Sampler: 15%|█▌ | 18/119 [00:22<01:04, 1.56it/s]
DDIM Sampler: 16%|█▌ | 19/119 [00:23<01:03, 1.57it/s]
DDIM Sampler: 17%|█▋ | 20/119 [00:23<01:02, 1.57it/s]
DDIM Sampler: 18%|█▊ | 21/119 [00:24<01:02, 1.57it/s]
DDIM Sampler: 18%|█▊ | 22/119 [00:24<01:02, 1.56it/s]
DDIM Sampler: 19%|█▉ | 23/119 [00:25<01:01, 1.57it/s]
DDIM Sampler: 20%|██ | 24/119 [00:26<01:00, 1.57it/s]
DDIM Sampler: 21%|██ | 25/119 [00:26<00:59, 1.57it/s]
DDIM Sampler: 22%|██▏ | 26/119 [00:27<00:59, 1.57it/s]
DDIM Sampler: 23%|██▎ | 27/119 [00:28<00:58, 1.57it/s]
DDIM Sampler: 24%|██▎ | 28/119 [00:28<00:57, 1.59it/s]
DDIM Sampler: 24%|██▍ | 29/119 [00:29<00:56, 1.60it/s]
DDIM Sampler: 25%|██▌ | 30/119 [00:29<00:55, 1.61it/s]
DDIM Sampler: 26%|██▌ | 31/119 [00:30<00:54, 1.61it/s]
DDIM Sampler: 27%|██▋ | 32/119 [00:31<00:53, 1.62it/s]
DDIM Sampler: 28%|██▊ | 33/119 [00:31<00:52, 1.63it/s]
DDIM Sampler: 29%|██▊ | 34/119 [00:32<00:51, 1.64it/s]
DDIM Sampler: 29%|██▉ | 35/119 [00:33<00:50, 1.65it/s]
DDIM Sampler: 30%|███ | 36/119 [00:33<00:50, 1.65it/s]
DDIM Sampler: 31%|███ | 37/119 [00:34<00:49, 1.65it/s]
DDIM Sampler: 32%|███▏ | 38/119 [00:34<00:49, 1.65it/s]
DDIM Sampler: 33%|███▎ | 39/119 [00:35<00:48, 1.64it/s]
DDIM Sampler: 34%|███▎ | 40/119 [00:36<00:48, 1.64it/s]
DDIM Sampler: 34%|███▍ | 41/119 [00:36<00:47, 1.63it/s]
DDIM Sampler: 35%|███▌ | 42/119 [00:37<00:47, 1.62it/s]
DDIM Sampler: 36%|███▌ | 43/119 [00:37<00:47, 1.59it/s]
DDIM Sampler: 37%|███▋ | 44/119 [00:38<00:47, 1.58it/s]
DDIM Sampler: 38%|███▊ | 45/119 [00:39<00:47, 1.57it/s]
DDIM Sampler: 39%|███▊ | 46/119 [00:39<00:46, 1.57it/s]
DDIM Sampler: 39%|███▉ | 47/119 [00:40<00:45, 1.58it/s]
DDIM Sampler: 40%|████ | 48/119 [00:41<00:44, 1.58it/s]
DDIM Sampler: 41%|████ | 49/119 [00:41<00:44, 1.58it/s]
DDIM Sampler: 42%|████▏ | 50/119 [00:42<00:43, 1.58it/s]
DDIM Sampler: 43%|████▎ | 51/119 [00:43<00:42, 1.58it/s]
DDIM Sampler: 44%|████▎ | 52/119 [00:43<00:42, 1.58it/s]
DDIM Sampler: 45%|████▍ | 53/119 [00:44<00:41, 1.58it/s]
DDIM Sampler: 45%|████▌ | 54/119 [00:44<00:41, 1.57it/s]
DDIM Sampler: 46%|████▌ | 55/119 [00:45<00:40, 1.58it/s]
DDIM Sampler: 47%|████▋ | 56/119 [00:46<00:39, 1.58it/s]
DDIM Sampler: 48%|████▊ | 57/119 [00:46<00:39, 1.58it/s]
DDIM Sampler: 49%|████▊ | 58/119 [00:47<00:38, 1.58it/s]
DDIM Sampler: 50%|████▉ | 59/119 [00:48<00:37, 1.58it/s]
DDIM Sampler: 50%|█████ | 60/119 [00:48<00:37, 1.57it/s]
DDIM Sampler: 51%|█████▏ | 61/119 [00:49<00:36, 1.58it/s]
DDIM Sampler: 52%|█████▏ | 62/119 [00:50<00:36, 1.57it/s]
DDIM Sampler: 53%|█████▎ | 63/119 [00:50<00:36, 1.55it/s]
DDIM Sampler: 54%|█████▍ | 64/119 [00:51<00:35, 1.54it/s]
DDIM Sampler: 55%|█████▍ | 65/119 [00:52<00:35, 1.53it/s]
DDIM Sampler: 55%|█████▌ | 66/119 [00:52<00:34, 1.53it/s]
DDIM Sampler: 56%|█████▋ | 67/119 [00:53<00:34, 1.52it/s]
DDIM Sampler: 57%|█████▋ | 68/119 [00:54<00:33, 1.52it/s]
DDIM Sampler: 58%|█████▊ | 69/119 [00:54<00:33, 1.51it/s]
DDIM Sampler: 59%|█████▉ | 70/119 [00:55<00:32, 1.51it/s]
DDIM Sampler: 60%|█████▉ | 71/119 [00:55<00:31, 1.51it/s]
DDIM Sampler: 61%|██████ | 72/119 [00:56<00:31, 1.51it/s]
DDIM Sampler: 61%|██████▏ | 73/119 [00:57<00:30, 1.51it/s]
DDIM Sampler: 62%|██████▏ | 74/119 [00:57<00:29, 1.51it/s]
DDIM Sampler: 63%|██████▎ | 75/119 [00:58<00:29, 1.51it/s]
DDIM Sampler: 64%|██████▍ | 76/119 [00:59<00:28, 1.51it/s]
DDIM Sampler: 65%|██████▍ | 77/119 [00:59<00:27, 1.51it/s]
DDIM Sampler: 66%|██████▌ | 78/119 [01:00<00:27, 1.51it/s]
DDIM Sampler: 66%|██████▋ | 79/119 [01:01<00:26, 1.51it/s]
DDIM Sampler: 67%|██████▋ | 80/119 [01:01<00:25, 1.50it/s]
DDIM Sampler: 68%|██████▊ | 81/119 [01:02<00:25, 1.50it/s]
DDIM Sampler: 69%|██████▉ | 82/119 [01:03<00:24, 1.50it/s]
DDIM Sampler: 70%|██████▉ | 83/119 [01:03<00:23, 1.50it/s]
DDIM Sampler: 71%|███████ | 84/119 [01:04<00:23, 1.50it/s]
DDIM Sampler: 71%|███████▏ | 85/119 [01:05<00:22, 1.50it/s]
DDIM Sampler: 72%|███████▏ | 86/119 [01:05<00:22, 1.49it/s]
DDIM Sampler: 73%|███████▎ | 87/119 [01:06<00:21, 1.49it/s]
DDIM Sampler: 74%|███████▍ | 88/119 [01:07<00:20, 1.49it/s]
DDIM Sampler: 75%|███████▍ | 89/119 [01:07<00:20, 1.50it/s]
DDIM Sampler: 76%|███████▌ | 90/119 [01:08<00:19, 1.50it/s]
DDIM Sampler: 76%|███████▋ | 91/119 [01:09<00:18, 1.49it/s]
DDIM Sampler: 77%|███████▋ | 92/119 [01:10<00:18, 1.49it/s]
DDIM Sampler: 78%|███████▊ | 93/119 [01:10<00:17, 1.49it/s]
DDIM Sampler: 79%|███████▉ | 94/119 [01:11<00:16, 1.49it/s]
DDIM Sampler: 80%|███████▉ | 95/119 [01:12<00:16, 1.49it/s]
DDIM Sampler: 81%|████████ | 96/119 [01:12<00:15, 1.49it/s]
DDIM Sampler: 82%|████████▏ | 97/119 [01:13<00:14, 1.48it/s]
DDIM Sampler: 82%|████████▏ | 98/119 [01:14<00:14, 1.49it/s]
DDIM Sampler: 83%|████████▎ | 99/119 [01:14<00:13, 1.48it/s]
DDIM Sampler: 84%|████████▍ | 100/119 [01:15<00:12, 1.49it/s]
DDIM Sampler: 85%|████████▍ | 101/119 [01:16<00:12, 1.49it/s]
DDIM Sampler: 86%|████████▌ | 102/119 [01:16<00:11, 1.50it/s]
DDIM Sampler: 87%|████████▋ | 103/119 [01:17<00:10, 1.50it/s]
DDIM Sampler: 87%|████████▋ | 104/119 [01:18<00:10, 1.49it/s]
DDIM Sampler: 88%|████████▊ | 105/119 [01:18<00:09, 1.50it/s]
DDIM Sampler: 89%|████████▉ | 106/119 [01:19<00:08, 1.51it/s]
DDIM Sampler: 90%|████████▉ | 107/119 [01:20<00:07, 1.51it/s]
DDIM Sampler: 91%|█████████ | 108/119 [01:20<00:07, 1.51it/s]
DDIM Sampler: 92%|█████████▏| 109/119 [01:21<00:06, 1.51it/s]
DDIM Sampler: 92%|█████████▏| 110/119 [01:22<00:05, 1.51it/s]
DDIM Sampler: 93%|█████████▎| 111/119 [01:22<00:05, 1.51it/s]
DDIM Sampler: 94%|█████████▍| 112/119 [01:23<00:04, 1.50it/s]
DDIM Sampler: 95%|█████████▍| 113/119 [01:24<00:03, 1.51it/s]
DDIM Sampler: 96%|█████████▌| 114/119 [01:24<00:03, 1.51it/s]
DDIM Sampler: 97%|█████████▋| 115/119 [01:25<00:02, 1.51it/s]
DDIM Sampler: 97%|█████████▋| 116/119 [01:25<00:01, 1.51it/s]
DDIM Sampler: 98%|█████████▊| 117/119 [01:26<00:01, 1.51it/s]
DDIM Sampler: 99%|█████████▉| 118/119 [01:27<00:00, 1.51it/s]
DDIM Sampler: 100%|██████████| 119/119 [01:27<00:00, 1.51it/s]
DDIM Sampler: 100%|██████████| 119/119 [01:27<00:00, 1.35it/s]
python inference_gfpgan.py -i /tmp/tmprqvpx06_gfpgan/temp_1658847856.png -o results -v 1.3 -s 2
huggingface/tokenizers: The current process just got forked, after parallelism has already been used. Disabling parallelism to avoid deadlocks...
To disable this warning, you can either:
- Avoid using `tokenizers` before the fork if possible
- Explicitly set the environment variable TOKENIZERS_PARALLELISM=(true | false)
Downloading: "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth" to /root/.pyenv/versions/3.8.13/lib/python3.8/site-packages/realesrgan/weights/RealESRGAN_x2plus.pth
0%| | 0.00/64.0M [00:00<?, ?B/s]
16%|█▌ | 10.1M/64.0M [00:00<00:00, 106MB/s]
58%|█████▊ | 37.1M/64.0M [00:00<00:00, 210MB/s]
100%|█████████▉| 63.8M/64.0M [00:00<00:00, 242MB/s]
100%|██████████| 64.0M/64.0M [00:00<00:00, 223MB/s]
Processing temp_1658847856.png ...
Tile 1/1
Results are in the [results] folder.
Data shape for DDIM sampling is (1, 4, 48, 40), eta 1.1
Running DDIM Sampling with 74 timesteps
DDIM Sampler: 0%| | 0/74 [00:00<?, ?it/s]
DDIM Sampler: 1%|▏ | 1/74 [00:09<11:30, 9.46s/it]
DDIM Sampler: 3%|▎ | 2/74 [00:10<05:25, 4.53s/it]
DDIM Sampler: 4%|▍ | 3/74 [00:11<03:29, 2.95s/it]
DDIM Sampler: 5%|▌ | 4/74 [00:12<02:34, 2.21s/it]
DDIM Sampler: 7%|▋ | 5/74 [00:13<02:04, 1.80s/it]
DDIM Sampler: 8%|▊ | 6/74 [00:14<01:45, 1.55s/it]
DDIM Sampler: 9%|▉ | 7/74 [00:15<01:33, 1.40s/it]
DDIM Sampler: 11%|█ | 8/74 [00:16<01:25, 1.30s/it]
DDIM Sampler: 12%|█▏ | 9/74 [00:18<01:19, 1.23s/it]
DDIM Sampler: 14%|█▎ | 10/74 [00:19<01:15, 1.18s/it]
DDIM Sampler: 15%|█▍ | 11/74 [00:20<01:12, 1.14s/it]
DDIM Sampler: 16%|█▌ | 12/74 [00:21<01:09, 1.12s/it]
DDIM Sampler: 18%|█▊ | 13/74 [00:22<01:07, 1.11s/it]
DDIM Sampler: 19%|█▉ | 14/74 [00:23<01:05, 1.10s/it]
DDIM Sampler: 20%|██ | 15/74 [00:24<01:04, 1.09s/it]
DDIM Sampler: 22%|██▏ | 16/74 [00:25<01:02, 1.08s/it]
DDIM Sampler: 23%|██▎ | 17/74 [00:26<01:01, 1.08s/it]
DDIM Sampler: 24%|██▍ | 18/74 [00:27<01:00, 1.08s/it]
DDIM Sampler: 26%|██▌ | 19/74 [00:28<00:59, 1.08s/it]
DDIM Sampler: 27%|██▋ | 20/74 [00:29<00:58, 1.08s/it]
DDIM Sampler: 28%|██▊ | 21/74 [00:30<00:56, 1.07s/it]
DDIM Sampler: 30%|██▉ | 22/74 [00:31<00:56, 1.08s/it]
DDIM Sampler: 31%|███ | 23/74 [00:33<00:54, 1.08s/it]
DDIM Sampler: 32%|███▏ | 24/74 [00:34<00:53, 1.07s/it]
DDIM Sampler: 34%|███▍ | 25/74 [00:35<00:52, 1.07s/it]
DDIM Sampler: 35%|███▌ | 26/74 [00:36<00:51, 1.07s/it]
DDIM Sampler: 36%|███▋ | 27/74 [00:37<00:50, 1.07s/it]
DDIM Sampler: 38%|███▊ | 28/74 [00:38<00:49, 1.07s/it]
DDIM Sampler: 39%|███▉ | 29/74 [00:39<00:48, 1.07s/it]
DDIM Sampler: 41%|████ | 30/74 [00:40<00:47, 1.07s/it]
DDIM Sampler: 42%|████▏ | 31/74 [00:41<00:46, 1.07s/it]
DDIM Sampler: 43%|████▎ | 32/74 [00:42<00:45, 1.08s/it]
DDIM Sampler: 45%|████▍ | 33/74 [00:43<00:44, 1.08s/it]
DDIM Sampler: 46%|████▌ | 34/74 [00:44<00:42, 1.07s/it]
DDIM Sampler: 47%|████▋ | 35/74 [00:45<00:41, 1.08s/it]
DDIM Sampler: 49%|████▊ | 36/74 [00:46<00:40, 1.07s/it]
DDIM Sampler: 50%|█████ | 37/74 [00:48<00:39, 1.08s/it]
DDIM Sampler: 51%|█████▏ | 38/74 [00:49<00:38, 1.08s/it]
DDIM Sampler: 53%|█████▎ | 39/74 [00:50<00:37, 1.08s/it]
DDIM Sampler: 54%|█████▍ | 40/74 [00:51<00:36, 1.08s/it]
DDIM Sampler: 55%|█████▌ | 41/74 [00:52<00:35, 1.09s/it]
DDIM Sampler: 57%|█████▋ | 42/74 [00:53<00:34, 1.09s/it]
DDIM Sampler: 58%|█████▊ | 43/74 [00:54<00:33, 1.09s/it]
DDIM Sampler: 59%|█████▉ | 44/74 [00:55<00:32, 1.09s/it]
DDIM Sampler: 61%|██████ | 45/74 [00:56<00:31, 1.09s/it]
DDIM Sampler: 62%|██████▏ | 46/74 [00:57<00:30, 1.09s/it]
DDIM Sampler: 64%|██████▎ | 47/74 [00:58<00:29, 1.09s/it]
DDIM Sampler: 65%|██████▍ | 48/74 [01:00<00:28, 1.10s/it]
DDIM Sampler: 66%|██████▌ | 49/74 [01:01<00:27, 1.10s/it]
DDIM Sampler: 68%|██████▊ | 50/74 [01:02<00:26, 1.10s/it]
DDIM Sampler: 69%|██████▉ | 51/74 [01:03<00:25, 1.10s/it]
DDIM Sampler: 70%|███████ | 52/74 [01:04<00:24, 1.10s/it]
DDIM Sampler: 72%|███████▏ | 53/74 [01:05<00:23, 1.10s/it]
DDIM Sampler: 73%|███████▎ | 54/74 [01:06<00:22, 1.10s/it]
DDIM Sampler: 74%|███████▍ | 55/74 [01:07<00:20, 1.10s/it]
DDIM Sampler: 76%|███████▌ | 56/74 [01:08<00:19, 1.10s/it]
DDIM Sampler: 77%|███████▋ | 57/74 [01:09<00:18, 1.10s/it]
DDIM Sampler: 78%|███████▊ | 58/74 [01:11<00:17, 1.10s/it]
DDIM Sampler: 80%|███████▉ | 59/74 [01:12<00:16, 1.10s/it]
DDIM Sampler: 81%|████████ | 60/74 [01:13<00:15, 1.10s/it]
DDIM Sampler: 82%|████████▏ | 61/74 [01:14<00:14, 1.10s/it]
DDIM Sampler: 84%|████████▍ | 62/74 [01:15<00:13, 1.10s/it]
DDIM Sampler: 85%|████████▌ | 63/74 [01:16<00:12, 1.10s/it]
DDIM Sampler: 86%|████████▋ | 64/74 [01:17<00:11, 1.10s/it]
DDIM Sampler: 88%|████████▊ | 65/74 [01:18<00:09, 1.10s/it]
DDIM Sampler: 89%|████████▉ | 66/74 [01:19<00:08, 1.10s/it]
DDIM Sampler: 91%|█████████ | 67/74 [01:21<00:07, 1.10s/it]
DDIM Sampler: 92%|█████████▏| 68/74 [01:22<00:06, 1.10s/it]
DDIM Sampler: 93%|█████████▎| 69/74 [01:23<00:05, 1.10s/it]
DDIM Sampler: 95%|█████████▍| 70/74 [01:24<00:04, 1.10s/it]
DDIM Sampler: 96%|█████████▌| 71/74 [01:25<00:03, 1.11s/it]
DDIM Sampler: 97%|█████████▋| 72/74 [01:26<00:02, 1.11s/it]
DDIM Sampler: 99%|█████████▊| 73/74 [01:27<00:01, 1.11s/it]
DDIM Sampler: 100%|██████████| 74/74 [01:28<00:00, 1.11s/it]
DDIM Sampler: 100%|██████████| 74/74 [01:28<00:00, 1.20s/it]
Sampling: 100%|██████████| 1/1 [03:14<00:00, 194.40s/it]
Sampling: 100%|██████████| 1/1 [03:14<00:00, 194.40s/it]
This example was created by a different version, nightmareai/majesty-diffusion:73bfb38e.