Prediction
stability-ai/stable-diffusion:f178fa7aInput
- width
- "512"
- height
- "512"
- prompt
- astronaut riding a horse on mars, drawing, sketch, pencil
- scheduler
- K_EULER
- num_outputs
- "4"
- guidance_scale
- 7.5
- prompt_strength
- 0.8
- num_inference_steps
- 50
{
"width": "512",
"height": "512",
"prompt": "astronaut riding a horse on mars, drawing, sketch, pencil",
"scheduler": "K_EULER",
"num_outputs": "4",
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
Install Replicate’s Node.js client library:
npm install replicate
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import and set up the client:
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run stability-ai/stable-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"stability-ai/stable-diffusion:f178fa7a1ae43a9a9af01b833b9d2ecf97b1bcb0acfd2dc5dd04895e042863f1",
{
input: {
width: "512",
height: "512",
prompt: "astronaut riding a horse on mars, drawing, sketch, pencil",
scheduler: "K_EULER",
num_outputs: "4",
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:
pip install replicate
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Import the client:
import replicate
Run stability-ai/stable-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"stability-ai/stable-diffusion:f178fa7a1ae43a9a9af01b833b9d2ecf97b1bcb0acfd2dc5dd04895e042863f1",
input={
"width": "512",
"height": "512",
"prompt": "astronaut riding a horse on mars, drawing, sketch, pencil",
"scheduler": "K_EULER",
"num_outputs": "4",
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
Set the
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/stable-diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "f178fa7a1ae43a9a9af01b833b9d2ecf97b1bcb0acfd2dc5dd04895e042863f1",
"input": {
"width": "512",
"height": "512",
"prompt": "astronaut riding a horse on mars, drawing, sketch, pencil",
"scheduler": "K_EULER",
"num_outputs": "4",
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{
"completed_at": "2023-02-15T17:18:58.143874Z",
"created_at": "2023-02-15T17:18:39.719204Z",
"data_removed": false,
"error": null,
"id": "h6h4e3remjcn5i4by35qyzucbe",
"input": {
"width": "512",
"height": "512",
"prompt": "astronaut riding a horse on mars, drawing, sketch, pencil",
"scheduler": "K_EULER",
"num_outputs": "4",
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 44473\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:15, 3.17it/s]\n 4%|▍ | 2/50 [00:00<00:14, 3.28it/s]\n 6%|▌ | 3/50 [00:00<00:14, 3.31it/s]\n 8%|▊ | 4/50 [00:01<00:13, 3.33it/s]\n 10%|█ | 5/50 [00:01<00:13, 3.34it/s]\n 12%|█▏ | 6/50 [00:01<00:13, 3.34it/s]\n 14%|█▍ | 7/50 [00:02<00:12, 3.35it/s]\n 16%|█▌ | 8/50 [00:02<00:12, 3.35it/s]\n 18%|█▊ | 9/50 [00:02<00:12, 3.35it/s]\n 20%|██ | 10/50 [00:02<00:11, 3.35it/s]\n 22%|██▏ | 11/50 [00:03<00:11, 3.35it/s]\n 24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]\n 26%|██▌ | 13/50 [00:03<00:11, 3.36it/s]\n 28%|██▊ | 14/50 [00:04<00:10, 3.36it/s]\n 30%|███ | 15/50 [00:04<00:10, 3.36it/s]\n 32%|███▏ | 16/50 [00:04<00:10, 3.36it/s]\n 34%|███▍ | 17/50 [00:05<00:09, 3.36it/s]\n 36%|███▌ | 18/50 [00:05<00:09, 3.36it/s]\n 38%|███▊ | 19/50 [00:05<00:09, 3.36it/s]\n 40%|████ | 20/50 [00:05<00:08, 3.36it/s]\n 42%|████▏ | 21/50 [00:06<00:08, 3.36it/s]\n 44%|████▍ | 22/50 [00:06<00:08, 3.36it/s]\n 46%|████▌ | 23/50 [00:06<00:08, 3.36it/s]\n 48%|████▊ | 24/50 [00:07<00:07, 3.36it/s]\n 50%|█████ | 25/50 [00:07<00:07, 3.36it/s]\n 52%|█████▏ | 26/50 [00:07<00:07, 3.36it/s]\n 54%|█████▍ | 27/50 [00:08<00:06, 3.36it/s]\n 56%|█████▌ | 28/50 [00:08<00:06, 3.36it/s]\n 58%|█████▊ | 29/50 [00:08<00:06, 3.36it/s]\n 60%|██████ | 30/50 [00:08<00:05, 3.36it/s]\n 62%|██████▏ | 31/50 [00:09<00:05, 3.36it/s]\n 64%|██████▍ | 32/50 [00:09<00:05, 3.36it/s]\n 66%|██████▌ | 33/50 [00:09<00:05, 3.36it/s]\n 68%|██████▊ | 34/50 [00:10<00:04, 3.36it/s]\n 70%|███████ | 35/50 [00:10<00:04, 3.36it/s]\n 72%|███████▏ | 36/50 [00:10<00:04, 3.37it/s]\n 74%|███████▍ | 37/50 [00:11<00:03, 3.37it/s]\n 76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s]\n 78%|███████▊ | 39/50 [00:11<00:03, 3.37it/s]\n 80%|████████ | 40/50 [00:11<00:02, 3.37it/s]\n 82%|████████▏ | 41/50 [00:12<00:02, 3.37it/s]\n 84%|████████▍ | 42/50 [00:12<00:02, 3.37it/s]\n 86%|████████▌ | 43/50 [00:12<00:02, 3.37it/s]\n 88%|████████▊ | 44/50 [00:13<00:01, 3.37it/s]\n 90%|█████████ | 45/50 [00:13<00:01, 3.37it/s]\n 92%|█████████▏| 46/50 [00:13<00:01, 3.37it/s]\n 94%|█████████▍| 47/50 [00:14<00:00, 3.37it/s]\n 96%|█████████▌| 48/50 [00:14<00:00, 3.37it/s]\n 98%|█████████▊| 49/50 [00:14<00:00, 3.37it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.37it/s]\n100%|██████████| 50/50 [00:14<00:00, 3.36it/s]",
"metrics": {
"predict_time": 18.3501,
"total_time": 18.42467
},
"output": [
"https://replicate.delivery/pbxt/g31qQPpQry7YPx7EuGF0BTI5AieazeVVftu0pdaynNeffFrHE/out-0.png",
"https://replicate.delivery/pbxt/mzM8YIl3bM5JLl0KvfxuhW7ztFq2TAFPlMyCnmhfyNfAwY9gA/out-1.png",
"https://replicate.delivery/pbxt/7lolEVoXVXprE16uqCpn38d10EfjZ0X06beAjfYuzKFBwY9gA/out-2.png",
"https://replicate.delivery/pbxt/wOSXkb02pyIlAJ3xIfgASyfbgqWwf8GUnsrDXDsG56aCwY9gA/out-3.png"
],
"started_at": "2023-02-15T17:18:39.793774Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/h6h4e3remjcn5i4by35qyzucbe",
"cancel": "https://api.replicate.com/v1/predictions/h6h4e3remjcn5i4by35qyzucbe/cancel"
},
"version": "f178fa7a1ae43a9a9af01b833b9d2ecf97b1bcb0acfd2dc5dd04895e042863f1"
}
Generated in
Using seed: 44473
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:15, 3.17it/s]
4%|▍ | 2/50 [00:00<00:14, 3.28it/s]
6%|▌ | 3/50 [00:00<00:14, 3.31it/s]
8%|▊ | 4/50 [00:01<00:13, 3.33it/s]
10%|█ | 5/50 [00:01<00:13, 3.34it/s]
12%|█▏ | 6/50 [00:01<00:13, 3.34it/s]
14%|█▍ | 7/50 [00:02<00:12, 3.35it/s]
16%|█▌ | 8/50 [00:02<00:12, 3.35it/s]
18%|█▊ | 9/50 [00:02<00:12, 3.35it/s]
20%|██ | 10/50 [00:02<00:11, 3.35it/s]
22%|██▏ | 11/50 [00:03<00:11, 3.35it/s]
24%|██▍ | 12/50 [00:03<00:11, 3.36it/s]
26%|██▌ | 13/50 [00:03<00:11, 3.36it/s]
28%|██▊ | 14/50 [00:04<00:10, 3.36it/s]
30%|███ | 15/50 [00:04<00:10, 3.36it/s]
32%|███▏ | 16/50 [00:04<00:10, 3.36it/s]
34%|███▍ | 17/50 [00:05<00:09, 3.36it/s]
36%|███▌ | 18/50 [00:05<00:09, 3.36it/s]
38%|███▊ | 19/50 [00:05<00:09, 3.36it/s]
40%|████ | 20/50 [00:05<00:08, 3.36it/s]
42%|████▏ | 21/50 [00:06<00:08, 3.36it/s]
44%|████▍ | 22/50 [00:06<00:08, 3.36it/s]
46%|████▌ | 23/50 [00:06<00:08, 3.36it/s]
48%|████▊ | 24/50 [00:07<00:07, 3.36it/s]
50%|█████ | 25/50 [00:07<00:07, 3.36it/s]
52%|█████▏ | 26/50 [00:07<00:07, 3.36it/s]
54%|█████▍ | 27/50 [00:08<00:06, 3.36it/s]
56%|█████▌ | 28/50 [00:08<00:06, 3.36it/s]
58%|█████▊ | 29/50 [00:08<00:06, 3.36it/s]
60%|██████ | 30/50 [00:08<00:05, 3.36it/s]
62%|██████▏ | 31/50 [00:09<00:05, 3.36it/s]
64%|██████▍ | 32/50 [00:09<00:05, 3.36it/s]
66%|██████▌ | 33/50 [00:09<00:05, 3.36it/s]
68%|██████▊ | 34/50 [00:10<00:04, 3.36it/s]
70%|███████ | 35/50 [00:10<00:04, 3.36it/s]
72%|███████▏ | 36/50 [00:10<00:04, 3.37it/s]
74%|███████▍ | 37/50 [00:11<00:03, 3.37it/s]
76%|███████▌ | 38/50 [00:11<00:03, 3.37it/s]
78%|███████▊ | 39/50 [00:11<00:03, 3.37it/s]
80%|████████ | 40/50 [00:11<00:02, 3.37it/s]
82%|████████▏ | 41/50 [00:12<00:02, 3.37it/s]
84%|████████▍ | 42/50 [00:12<00:02, 3.37it/s]
86%|████████▌ | 43/50 [00:12<00:02, 3.37it/s]
88%|████████▊ | 44/50 [00:13<00:01, 3.37it/s]
90%|█████████ | 45/50 [00:13<00:01, 3.37it/s]
92%|█████████▏| 46/50 [00:13<00:01, 3.37it/s]
94%|█████████▍| 47/50 [00:14<00:00, 3.37it/s]
96%|█████████▌| 48/50 [00:14<00:00, 3.37it/s]
98%|█████████▊| 49/50 [00:14<00:00, 3.37it/s]
100%|██████████| 50/50 [00:14<00:00, 3.37it/s]
100%|██████████| 50/50 [00:14<00:00, 3.36it/s]