You're looking at a specific version of this model. Jump to the model overview.
philz1337x /clarity-upscaler:dfad4170
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"philz1337x/clarity-upscaler:dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e",
{
input: {
seed: 1337,
image: "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
prompt: "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
dynamic: 6,
handfix: "disabled",
pattern: false,
sharpen: 0,
sd_model: "juggernaut_reborn.safetensors [338b85bc4f]",
scheduler: "DPM++ 3M SDE Karras",
creativity: 0.35,
lora_links: "",
downscaling: false,
resemblance: 0.6,
scale_factor: 2,
tiling_width: 112,
output_format: "png",
tiling_height: 144,
custom_sd_model: "",
negative_prompt: "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
num_inference_steps: 18,
downscaling_resolution: 768
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"philz1337x/clarity-upscaler:dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e",
input={
"seed": 1337,
"image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"dynamic": 6,
"handfix": "disabled",
"pattern": False,
"sharpen": 0,
"sd_model": "juggernaut_reborn.safetensors [338b85bc4f]",
"scheduler": "DPM++ 3M SDE Karras",
"creativity": 0.35,
"lora_links": "",
"downscaling": False,
"resemblance": 0.6,
"scale_factor": 2,
"tiling_width": 112,
"output_format": "png",
"tiling_height": 144,
"custom_sd_model": "",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 18,
"downscaling_resolution": 768
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e",
"input": {
"seed": 1337,
"image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"dynamic": 6,
"handfix": "disabled",
"pattern": false,
"sharpen": 0,
"sd_model": "juggernaut_reborn.safetensors [338b85bc4f]",
"scheduler": "DPM++ 3M SDE Karras",
"creativity": 0.35,
"lora_links": "",
"downscaling": false,
"resemblance": 0.6,
"scale_factor": 2,
"tiling_width": 112,
"output_format": "png",
"tiling_height": 144,
"custom_sd_model": "",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 18,
"downscaling_resolution": 768
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/philz1337x/clarity-upscaler@sha256:dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e \
-i 'seed=1337' \
-i 'image="https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png"' \
-i 'prompt="masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>"' \
-i 'dynamic=6' \
-i 'handfix="disabled"' \
-i 'pattern=false' \
-i 'sharpen=0' \
-i 'sd_model="juggernaut_reborn.safetensors [338b85bc4f]"' \
-i 'scheduler="DPM++ 3M SDE Karras"' \
-i 'creativity=0.35' \
-i 'lora_links=""' \
-i 'downscaling=false' \
-i 'resemblance=0.6' \
-i 'scale_factor=2' \
-i 'tiling_width=112' \
-i 'output_format="png"' \
-i 'tiling_height=144' \
-i 'custom_sd_model=""' \
-i 'negative_prompt="(worst quality, low quality, normal quality:2) JuggernautNegative-neg"' \
-i 'num_inference_steps=18' \
-i 'downscaling_resolution=768'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/philz1337x/clarity-upscaler@sha256:dfad41707589d68ecdccd1dfa600d55a208f9310748e44bfe35b4a6291453d5e
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 1337, "image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png", "prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>", "dynamic": 6, "handfix": "disabled", "pattern": false, "sharpen": 0, "sd_model": "juggernaut_reborn.safetensors [338b85bc4f]", "scheduler": "DPM++ 3M SDE Karras", "creativity": 0.35, "lora_links": "", "downscaling": false, "resemblance": 0.6, "scale_factor": 2, "tiling_width": 112, "output_format": "png", "tiling_height": 144, "custom_sd_model": "", "negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg", "num_inference_steps": 18, "downscaling_resolution": 768 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.0081. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
We were unable to load these images. Please make sure the URLs are valid.
{ "input": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png", "outut": "https://replicate.delivery/pbxt/00paK5p2fY36XykEcte0skfqnSl3akRGTm4TC2l2wiU0E4QlA/1337-89fd2a6e-f5bd-11ee-87b9-bec9d6ff70a9.png" }
{
"completed_at": "2024-04-08T15:34:51.385820Z",
"created_at": "2024-04-08T15:34:38.558000Z",
"data_removed": false,
"error": null,
"id": "snbeynewvsrgp0ceqsc8gjk6sm",
"input": {
"seed": 1337,
"image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"dynamic": 6,
"sd_model": "juggernaut_reborn.safetensors [338b85bc4f]",
"scheduler": "DPM++ 3M SDE Karras",
"creativity": 0.35,
"lora_links": "",
"downscaling": false,
"resemblance": 0.6,
"scale_factor": 2,
"tiling_width": 112,
"tiling_height": 144,
"custom_sd_model": "",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 18,
"downscaling_resolution": 768
},
"logs": "Running prediction\n[Tiled Diffusion] upscaling image with 4x-UltraSharp...\n[Tiled Diffusion] ControlNet found, support is enabled.\n2024-04-08 15:34:42,215 - ControlNet - \u001b[0;32mINFO\u001b[0m - unit_separate = False, style_align = False\n2024-04-08 15:34:42,215 - ControlNet - \u001b[0;32mINFO\u001b[0m - Loading model from cache: control_v11f1e_sd15_tile\n2024-04-08 15:34:42,234 - ControlNet - \u001b[0;32mINFO\u001b[0m - Using preprocessor: tile_resample\n2024-04-08 15:34:42,234 - ControlNet - \u001b[0;32mINFO\u001b[0m - preprocessor resolution = 1536\n2024-04-08 15:34:42,310 - ControlNet - \u001b[0;32mINFO\u001b[0m - ControlNet Hooked - Time = 0.0993812084197998\nMultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 4, Batch size: 4, Tile batches: 1 (ext: ContrlNet)\n[Tiled VAE]: the input size is tiny and unnecessary to tile.\nMultiDiffusion Sampling: 0%| | 0/10 [00:00<?, ?it/s]\n 0%| | 0/7 [00:00<?, ?it/s]\u001b[A\nTotal progress: 0%| | 0/7 [00:00<?, ?it/s]\u001b[A\n 14%|█▍ | 1/7 [00:00<00:05, 1.10it/s]\u001b[A\nTotal progress: 29%|██▊ | 2/7 [00:00<00:02, 2.22it/s]\u001b[A\n 29%|██▊ | 2/7 [00:01<00:04, 1.11it/s]\u001b[A\nTotal progress: 43%|████▎ | 3/7 [00:01<00:02, 1.57it/s]\u001b[A\n 43%|████▎ | 3/7 [00:02<00:03, 1.11it/s]\u001b[A\nTotal progress: 57%|█████▋ | 4/7 [00:02<00:02, 1.36it/s]\u001b[A\n 57%|█████▋ | 4/7 [00:03<00:02, 1.11it/s]\u001b[A\nTotal progress: 71%|███████▏ | 5/7 [00:03<00:01, 1.26it/s]\u001b[A\n 71%|███████▏ | 5/7 [00:04<00:01, 1.11it/s]\u001b[A\nTotal progress: 86%|████████▌ | 6/7 [00:04<00:00, 1.21it/s]\u001b[A\n 86%|████████▌ | 6/7 [00:05<00:00, 1.11it/s]\u001b[A\n100%|██████████| 7/7 [00:06<00:00, 1.11it/s]\u001b[A\n100%|██████████| 7/7 [00:06<00:00, 1.11it/s]\nTotal progress: 100%|██████████| 7/7 [00:05<00:00, 1.18it/s]\u001b[A[Tiled VAE]: the input size is tiny and unnecessary to tile.\nTotal progress: 100%|██████████| 7/7 [00:06<00:00, 1.18it/s]\u001b[A\nTotal progress: 100%|██████████| 7/7 [00:06<00:00, 1.11it/s]\nPrediction took 11.742665767669678 seconds",
"metrics": {
"predict_time": 12.806754,
"total_time": 12.82782
},
"output": [
"https://replicate.delivery/pbxt/00paK5p2fY36XykEcte0skfqnSl3akRGTm4TC2l2wiU0E4QlA/1337-89fd2a6e-f5bd-11ee-87b9-bec9d6ff70a9.png"
],
"started_at": "2024-04-08T15:34:38.579066Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/snbeynewvsrgp0ceqsc8gjk6sm",
"cancel": "https://api.replicate.com/v1/predictions/snbeynewvsrgp0ceqsc8gjk6sm/cancel"
},
"version": "3bb9d3412f14261c2f8cfa15a56dd7b33f44af54777c517b860a3f678a5d7f3b"
}
Running prediction
[Tiled Diffusion] upscaling image with 4x-UltraSharp...
[Tiled Diffusion] ControlNet found, support is enabled.
2024-04-08 15:34:42,215 - ControlNet - INFO - unit_separate = False, style_align = False
2024-04-08 15:34:42,215 - ControlNet - INFO - Loading model from cache: control_v11f1e_sd15_tile
2024-04-08 15:34:42,234 - ControlNet - INFO - Using preprocessor: tile_resample
2024-04-08 15:34:42,234 - ControlNet - INFO - preprocessor resolution = 1536
2024-04-08 15:34:42,310 - ControlNet - INFO - ControlNet Hooked - Time = 0.0993812084197998
MultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 4, Batch size: 4, Tile batches: 1 (ext: ContrlNet)
[Tiled VAE]: the input size is tiny and unnecessary to tile.
MultiDiffusion Sampling: 0%| | 0/10 [00:00<?, ?it/s]
0%| | 0/7 [00:00<?, ?it/s]
Total progress: 0%| | 0/7 [00:00<?, ?it/s]
14%|█▍ | 1/7 [00:00<00:05, 1.10it/s]
Total progress: 29%|██▊ | 2/7 [00:00<00:02, 2.22it/s]
29%|██▊ | 2/7 [00:01<00:04, 1.11it/s]
Total progress: 43%|████▎ | 3/7 [00:01<00:02, 1.57it/s]
43%|████▎ | 3/7 [00:02<00:03, 1.11it/s]
Total progress: 57%|█████▋ | 4/7 [00:02<00:02, 1.36it/s]
57%|█████▋ | 4/7 [00:03<00:02, 1.11it/s]
Total progress: 71%|███████▏ | 5/7 [00:03<00:01, 1.26it/s]
71%|███████▏ | 5/7 [00:04<00:01, 1.11it/s]
Total progress: 86%|████████▌ | 6/7 [00:04<00:00, 1.21it/s]
86%|████████▌ | 6/7 [00:05<00:00, 1.11it/s]
100%|██████████| 7/7 [00:06<00:00, 1.11it/s]
100%|██████████| 7/7 [00:06<00:00, 1.11it/s]
Total progress: 100%|██████████| 7/7 [00:05<00:00, 1.18it/s][Tiled VAE]: the input size is tiny and unnecessary to tile.
Total progress: 100%|██████████| 7/7 [00:06<00:00, 1.18it/s]
Total progress: 100%|██████████| 7/7 [00:06<00:00, 1.11it/s]
Prediction took 11.742665767669678 seconds
This example was created by a different version, philz1337x/clarity-upscaler:3bb9d341.