Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
qunash /circassian-culture-flux-3000-steps:bf772d87
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run qunash/circassian-culture-flux-3000-steps using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"qunash/circassian-culture-flux-3000-steps:bf772d87d563c647335dd4bdf50ca56ee5ced4fe55bf0e8ed3d7f874303ae688",
{
input: {
seed: 38195,
model: "dev",
prompt: "An open book on a glass table displays dense text on the left page and a black and white portrait of a young woman wearing an breathtaking elegant royal dress on the right page.",
go_fast: false,
lora_scale: 1,
megapixels: "1",
num_outputs: 4,
aspect_ratio: "9:16",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 1,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run qunash/circassian-culture-flux-3000-steps using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"qunash/circassian-culture-flux-3000-steps:bf772d87d563c647335dd4bdf50ca56ee5ced4fe55bf0e8ed3d7f874303ae688",
input={
"seed": 38195,
"model": "dev",
"prompt": "An open book on a glass table displays dense text on the left page and a black and white portrait of a young woman wearing an breathtaking elegant royal dress on the right page.",
"go_fast": False,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "9:16",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run qunash/circassian-culture-flux-3000-steps using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "qunash/circassian-culture-flux-3000-steps:bf772d87d563c647335dd4bdf50ca56ee5ced4fe55bf0e8ed3d7f874303ae688",
"input": {
"seed": 38195,
"model": "dev",
"prompt": "An open book on a glass table displays dense text on the left page and a black and white portrait of a young woman wearing an breathtaking elegant royal dress on the right page.",
"go_fast": false,
"lora_scale": 1,
"megapixels": "1",
"num_outputs": 4,
"aspect_ratio": "9:16",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{
"completed_at": "2024-11-04T22:37:32.901774Z",
"created_at": "2024-11-04T22:36:25.945000Z",
"data_removed": false,
"error": null,
"id": "tje6m23xv5rm60cjz59b66mf7m",
"input": {
"seed": 38195,
"model": "dev",
"prompt": "An open book on a glass table displays dense text on the left page and a black and white portrait of a young woman wearing an breathtaking elegant royal dress on the right page.",
"lora_scale": 1,
"num_outputs": 4,
"aspect_ratio": "9:16",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 1,
"num_inference_steps": 50
},
"logs": "Using seed: 38195\nPrompt: An open book on a glass table displays dense text on the left page and a black and white portrait of a young woman wearing an breathtaking elegant royal dress on the right page.\n[!] txt2img mode\nUsing dev model\nfree=6519525326848\nDownloading weights\n2024-11-04T22:36:25Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpa7pwlivz/weights url=https://replicate.delivery/yhqm/wtXcKcWjsU6cOp1w1M0S5Pa3xxgzfXymMQmF8n3T7NmCz1pJA/trained_model.tar\n2024-11-04T22:36:27Z | INFO | [ Complete ] dest=/tmp/tmpa7pwlivz/weights size=\"172 MB\" total_elapsed=1.471s url=https://replicate.delivery/yhqm/wtXcKcWjsU6cOp1w1M0S5Pa3xxgzfXymMQmF8n3T7NmCz1pJA/trained_model.tar\nDownloaded weights in 1.50s\nLoaded LoRAs in 2.21s\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:01<01:02, 1.27s/it]\n 4%|▍ | 2/50 [00:02<00:55, 1.15s/it]\n 6%|▌ | 3/50 [00:03<00:56, 1.21s/it]\n 8%|▊ | 4/50 [00:04<00:56, 1.23s/it]\n 10%|█ | 5/50 [00:06<00:56, 1.25s/it]\n 12%|█▏ | 6/50 [00:07<00:55, 1.26s/it]\n 14%|█▍ | 7/50 [00:08<00:54, 1.26s/it]\n 16%|█▌ | 8/50 [00:09<00:53, 1.27s/it]\n 18%|█▊ | 9/50 [00:11<00:51, 1.27s/it]\n 20%|██ | 10/50 [00:12<00:50, 1.27s/it]\n 22%|██▏ | 11/50 [00:13<00:49, 1.27s/it]\n 24%|██▍ | 12/50 [00:15<00:48, 1.27s/it]\n 26%|██▌ | 13/50 [00:16<00:47, 1.27s/it]\n 28%|██▊ | 14/50 [00:17<00:45, 1.27s/it]\n 30%|███ | 15/50 [00:18<00:44, 1.27s/it]\n 32%|███▏ | 16/50 [00:20<00:43, 1.27s/it]\n 34%|███▍ | 17/50 [00:21<00:42, 1.27s/it]\n 36%|███▌ | 18/50 [00:22<00:40, 1.27s/it]\n 38%|███▊ | 19/50 [00:23<00:39, 1.27s/it]\n 40%|████ | 20/50 [00:25<00:38, 1.27s/it]\n 42%|████▏ | 21/50 [00:26<00:36, 1.27s/it]\n 44%|████▍ | 22/50 [00:27<00:35, 1.27s/it]\n 46%|████▌ | 23/50 [00:29<00:34, 1.27s/it]\n 48%|████▊ | 24/50 [00:30<00:33, 1.27s/it]\n 50%|█████ | 25/50 [00:31<00:31, 1.27s/it]\n 52%|█████▏ | 26/50 [00:32<00:30, 1.27s/it]\n 54%|█████▍ | 27/50 [00:34<00:29, 1.27s/it]\n 56%|█████▌ | 28/50 [00:35<00:28, 1.27s/it]\n 58%|█████▊ | 29/50 [00:36<00:26, 1.27s/it]\n 60%|██████ | 30/50 [00:38<00:25, 1.27s/it]\n 62%|██████▏ | 31/50 [00:39<00:24, 1.27s/it]\n 64%|██████▍ | 32/50 [00:40<00:22, 1.27s/it]\n 66%|██████▌ | 33/50 [00:41<00:21, 1.27s/it]\n 68%|██████▊ | 34/50 [00:43<00:20, 1.27s/it]\n 70%|███████ | 35/50 [00:44<00:19, 1.27s/it]\n 72%|███████▏ | 36/50 [00:45<00:17, 1.27s/it]\n 74%|███████▍ | 37/50 [00:46<00:16, 1.28s/it]\n 76%|███████▌ | 38/50 [00:48<00:15, 1.28s/it]\n 78%|███████▊ | 39/50 [00:49<00:14, 1.27s/it]\n 80%|████████ | 40/50 [00:50<00:12, 1.27s/it]\n 82%|████████▏ | 41/50 [00:52<00:11, 1.27s/it]\n 84%|████████▍ | 42/50 [00:53<00:10, 1.27s/it]\n 86%|████████▌ | 43/50 [00:54<00:08, 1.27s/it]\n 88%|████████▊ | 44/50 [00:55<00:07, 1.27s/it]\n 90%|█████████ | 45/50 [00:57<00:06, 1.27s/it]\n 92%|█████████▏| 46/50 [00:58<00:05, 1.27s/it]\n 94%|█████████▍| 47/50 [00:59<00:03, 1.27s/it]\n 96%|█████████▌| 48/50 [01:00<00:02, 1.28s/it]\n 98%|█████████▊| 49/50 [01:02<00:01, 1.27s/it]\n100%|██████████| 50/50 [01:03<00:00, 1.27s/it]\n100%|██████████| 50/50 [01:03<00:00, 1.27s/it]",
"metrics": {
"predict_time": 66.950128921,
"total_time": 66.956774
},
"output": [
"https://replicate.delivery/yhqm/v4YUtdIDEjpRI1YiL8GqEqNh8mHPqbF0nXjS557afges6vtTA/out-0.webp",
"https://replicate.delivery/yhqm/yJLcodIph6I5NBA8vdrWfCAaGhuJabHdN9N5bQpxedBs6vtTA/out-1.webp",
"https://replicate.delivery/yhqm/3Qje2umcTM0lWq8tve8YVPJMwe1Fku5uehttnZT9GqdxqftdC/out-2.webp",
"https://replicate.delivery/yhqm/3futO9A7bUwtGqErupfOsdpE0CKN4Kpupwx8mvEbKB4s6vtTA/out-3.webp"
],
"started_at": "2024-11-04T22:36:25.951645Z",
"status": "succeeded",
"urls": {
"stream": "https://stream.replicate.com/v1/files/wcdb-nwubgkaogsllllvv6jiukw37de5puzp5msr4efpmkzxobvm65i4a",
"get": "https://api.replicate.com/v1/predictions/tje6m23xv5rm60cjz59b66mf7m",
"cancel": "https://api.replicate.com/v1/predictions/tje6m23xv5rm60cjz59b66mf7m/cancel"
},
"version": "bf772d87d563c647335dd4bdf50ca56ee5ced4fe55bf0e8ed3d7f874303ae688"
}
Using seed: 38195
Prompt: An open book on a glass table displays dense text on the left page and a black and white portrait of a young woman wearing an breathtaking elegant royal dress on the right page.
[!] txt2img mode
Using dev model
free=6519525326848
Downloading weights
2024-11-04T22:36:25Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpa7pwlivz/weights url=https://replicate.delivery/yhqm/wtXcKcWjsU6cOp1w1M0S5Pa3xxgzfXymMQmF8n3T7NmCz1pJA/trained_model.tar
2024-11-04T22:36:27Z | INFO | [ Complete ] dest=/tmp/tmpa7pwlivz/weights size="172 MB" total_elapsed=1.471s url=https://replicate.delivery/yhqm/wtXcKcWjsU6cOp1w1M0S5Pa3xxgzfXymMQmF8n3T7NmCz1pJA/trained_model.tar
Downloaded weights in 1.50s
Loaded LoRAs in 2.21s
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:01<01:02, 1.27s/it]
4%|▍ | 2/50 [00:02<00:55, 1.15s/it]
6%|▌ | 3/50 [00:03<00:56, 1.21s/it]
8%|▊ | 4/50 [00:04<00:56, 1.23s/it]
10%|█ | 5/50 [00:06<00:56, 1.25s/it]
12%|█▏ | 6/50 [00:07<00:55, 1.26s/it]
14%|█▍ | 7/50 [00:08<00:54, 1.26s/it]
16%|█▌ | 8/50 [00:09<00:53, 1.27s/it]
18%|█▊ | 9/50 [00:11<00:51, 1.27s/it]
20%|██ | 10/50 [00:12<00:50, 1.27s/it]
22%|██▏ | 11/50 [00:13<00:49, 1.27s/it]
24%|██▍ | 12/50 [00:15<00:48, 1.27s/it]
26%|██▌ | 13/50 [00:16<00:47, 1.27s/it]
28%|██▊ | 14/50 [00:17<00:45, 1.27s/it]
30%|███ | 15/50 [00:18<00:44, 1.27s/it]
32%|███▏ | 16/50 [00:20<00:43, 1.27s/it]
34%|███▍ | 17/50 [00:21<00:42, 1.27s/it]
36%|███▌ | 18/50 [00:22<00:40, 1.27s/it]
38%|███▊ | 19/50 [00:23<00:39, 1.27s/it]
40%|████ | 20/50 [00:25<00:38, 1.27s/it]
42%|████▏ | 21/50 [00:26<00:36, 1.27s/it]
44%|████▍ | 22/50 [00:27<00:35, 1.27s/it]
46%|████▌ | 23/50 [00:29<00:34, 1.27s/it]
48%|████▊ | 24/50 [00:30<00:33, 1.27s/it]
50%|█████ | 25/50 [00:31<00:31, 1.27s/it]
52%|█████▏ | 26/50 [00:32<00:30, 1.27s/it]
54%|█████▍ | 27/50 [00:34<00:29, 1.27s/it]
56%|█████▌ | 28/50 [00:35<00:28, 1.27s/it]
58%|█████▊ | 29/50 [00:36<00:26, 1.27s/it]
60%|██████ | 30/50 [00:38<00:25, 1.27s/it]
62%|██████▏ | 31/50 [00:39<00:24, 1.27s/it]
64%|██████▍ | 32/50 [00:40<00:22, 1.27s/it]
66%|██████▌ | 33/50 [00:41<00:21, 1.27s/it]
68%|██████▊ | 34/50 [00:43<00:20, 1.27s/it]
70%|███████ | 35/50 [00:44<00:19, 1.27s/it]
72%|███████▏ | 36/50 [00:45<00:17, 1.27s/it]
74%|███████▍ | 37/50 [00:46<00:16, 1.28s/it]
76%|███████▌ | 38/50 [00:48<00:15, 1.28s/it]
78%|███████▊ | 39/50 [00:49<00:14, 1.27s/it]
80%|████████ | 40/50 [00:50<00:12, 1.27s/it]
82%|████████▏ | 41/50 [00:52<00:11, 1.27s/it]
84%|████████▍ | 42/50 [00:53<00:10, 1.27s/it]
86%|████████▌ | 43/50 [00:54<00:08, 1.27s/it]
88%|████████▊ | 44/50 [00:55<00:07, 1.27s/it]
90%|█████████ | 45/50 [00:57<00:06, 1.27s/it]
92%|█████████▏| 46/50 [00:58<00:05, 1.27s/it]
94%|█████████▍| 47/50 [00:59<00:03, 1.27s/it]
96%|█████████▌| 48/50 [01:00<00:02, 1.28s/it]
98%|█████████▊| 49/50 [01:02<00:01, 1.27s/it]
100%|██████████| 50/50 [01:03<00:00, 1.27s/it]
100%|██████████| 50/50 [01:03<00:00, 1.27s/it]