Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
stability-ai /sdxl:7762fd07
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
{
input: {
width: 2400,
height: 2400,
prompt: "ocean swells, by moebius",
refine: "expert_ensemble_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "boats, rocks, people, humans, animals, ships, sails",
prompt_strength: 0.8,
num_inference_steps: 100
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
input={
"width": 2400,
"height": 2400,
"prompt": "ocean swells, by moebius",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "boats, rocks, people, humans, animals, ships, sails",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run stability-ai/sdxl using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
"input": {
"width": 2400,
"height": 2400,
"prompt": "ocean swells, by moebius",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "boats, rocks, people, humans, animals, ships, sails",
"prompt_strength": 0.8,
"num_inference_steps": 100
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-08-11T20:12:32.752053Z",
"created_at": "2023-08-11T20:09:47.438574Z",
"data_removed": false,
"error": null,
"id": "4fucmblbgdnpax2y3tgr43532q",
"input": {
"width": 2400,
"height": 2400,
"prompt": "ocean swells, by moebius",
"refine": "expert_ensemble_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "boats, rocks, people, humans, animals, ships, sails",
"prompt_strength": 0.8,
"num_inference_steps": 100
},
"logs": "Using seed: 14451\nPrompt: ocean swells, by moebius\ntxt2img mode\n 0%| | 0/65 [00:00<?, ?it/s]\n 2%|▏ | 1/65 [00:01<01:51, 1.75s/it]\n 3%|▎ | 2/65 [00:03<01:50, 1.76s/it]\n 5%|▍ | 3/65 [00:05<01:49, 1.76s/it]\n 6%|▌ | 4/65 [00:07<01:47, 1.76s/it]\n 8%|▊ | 5/65 [00:08<01:45, 1.76s/it]\n 9%|▉ | 6/65 [00:10<01:44, 1.76s/it]\n 11%|█ | 7/65 [00:12<01:42, 1.76s/it]\n 12%|█▏ | 8/65 [00:14<01:40, 1.76s/it]\n 14%|█▍ | 9/65 [00:15<01:38, 1.76s/it]\n 15%|█▌ | 10/65 [00:17<01:36, 1.76s/it]\n 17%|█▋ | 11/65 [00:19<01:34, 1.76s/it]\n 18%|█▊ | 12/65 [00:21<01:33, 1.76s/it]\n 20%|██ | 13/65 [00:22<01:31, 1.76s/it]\n 22%|██▏ | 14/65 [00:24<01:29, 1.76s/it]\n 23%|██▎ | 15/65 [00:26<01:27, 1.76s/it]\n 25%|██▍ | 16/65 [00:28<01:26, 1.76s/it]\n 26%|██▌ | 17/65 [00:29<01:24, 1.76s/it]\n 28%|██▊ | 18/65 [00:31<01:22, 1.76s/it]\n 29%|██▉ | 19/65 [00:33<01:21, 1.76s/it]\n 31%|███ | 20/65 [00:35<01:19, 1.76s/it]\n 32%|███▏ | 21/65 [00:36<01:17, 1.76s/it]\n 34%|███▍ | 22/65 [00:38<01:15, 1.76s/it]\n 35%|███▌ | 23/65 [00:40<01:14, 1.77s/it]\n 37%|███▋ | 24/65 [00:42<01:12, 1.77s/it]\n 38%|███▊ | 25/65 [00:44<01:10, 1.77s/it]\n 40%|████ | 26/65 [00:45<01:08, 1.77s/it]\n 42%|████▏ | 27/65 [00:47<01:07, 1.77s/it]\n 43%|████▎ | 28/65 [00:49<01:05, 1.77s/it]\n 45%|████▍ | 29/65 [00:51<01:03, 1.77s/it]\n 46%|████▌ | 30/65 [00:52<01:01, 1.77s/it]\n 48%|████▊ | 31/65 [00:54<01:00, 1.77s/it]\n 49%|████▉ | 32/65 [00:56<00:58, 1.77s/it]\n 51%|█████ | 33/65 [00:58<00:56, 1.77s/it]\n 52%|█████▏ | 34/65 [00:59<00:54, 1.77s/it]\n 54%|█████▍ | 35/65 [01:01<00:53, 1.77s/it]\n 55%|█████▌ | 36/65 [01:03<00:51, 1.77s/it]\n 57%|█████▋ | 37/65 [01:05<00:49, 1.77s/it]\n 58%|█████▊ | 38/65 [01:07<00:47, 1.77s/it]\n 60%|██████ | 39/65 [01:08<00:46, 1.77s/it]\n 62%|██████▏ | 40/65 [01:10<00:44, 1.77s/it]\n 63%|██████▎ | 41/65 [01:12<00:42, 1.77s/it]\n 65%|██████▍ | 42/65 [01:14<00:40, 1.77s/it]\n 66%|██████▌ | 43/65 [01:15<00:39, 1.78s/it]\n 68%|██████▊ | 44/65 [01:17<00:37, 1.78s/it]\n 69%|██████▉ | 45/65 [01:19<00:35, 1.78s/it]\n 71%|███████ | 46/65 [01:21<00:33, 1.78s/it]\n 72%|███████▏ | 47/65 [01:23<00:31, 1.78s/it]\n 74%|███████▍ | 48/65 [01:24<00:30, 1.78s/it]\n 75%|███████▌ | 49/65 [01:26<00:28, 1.78s/it]\n 77%|███████▋ | 50/65 [01:28<00:26, 1.78s/it]\n 78%|███████▊ | 51/65 [01:30<00:24, 1.78s/it]\n 80%|████████ | 52/65 [01:31<00:23, 1.78s/it]\n 82%|████████▏ | 53/65 [01:33<00:21, 1.78s/it]\n 83%|████████▎ | 54/65 [01:35<00:19, 1.78s/it]\n 85%|████████▍ | 55/65 [01:37<00:17, 1.78s/it]\n 86%|████████▌ | 56/65 [01:39<00:16, 1.78s/it]\n 88%|████████▊ | 57/65 [01:40<00:14, 1.78s/it]\n 89%|████████▉ | 58/65 [01:42<00:12, 1.78s/it]\n 91%|█████████ | 59/65 [01:44<00:10, 1.78s/it]\n 92%|█████████▏| 60/65 [01:46<00:08, 1.78s/it]\n 94%|█████████▍| 61/65 [01:47<00:07, 1.78s/it]\n 95%|█████████▌| 62/65 [01:49<00:05, 1.78s/it]\n 97%|█████████▋| 63/65 [01:51<00:03, 1.78s/it]\n 98%|█████████▊| 64/65 [01:53<00:01, 1.78s/it]\n100%|██████████| 65/65 [01:55<00:00, 1.78s/it]\n100%|██████████| 65/65 [01:55<00:00, 1.77s/it]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:02<00:42, 2.22s/it]\n 10%|█ | 2/20 [00:04<00:40, 2.22s/it]\n 15%|█▌ | 3/20 [00:06<00:37, 2.22s/it]\n 20%|██ | 4/20 [00:08<00:35, 2.22s/it]\n 25%|██▌ | 5/20 [00:11<00:33, 2.22s/it]\n 30%|███ | 6/20 [00:13<00:31, 2.22s/it]\n 35%|███▌ | 7/20 [00:15<00:28, 2.22s/it]\n 40%|████ | 8/20 [00:17<00:26, 2.22s/it]\n 45%|████▌ | 9/20 [00:19<00:24, 2.22s/it]\n 50%|█████ | 10/20 [00:22<00:22, 2.22s/it]\n 55%|█████▌ | 11/20 [00:24<00:19, 2.22s/it]\n 60%|██████ | 12/20 [00:26<00:17, 2.22s/it]\n 65%|██████▌ | 13/20 [00:28<00:15, 2.22s/it]\n 70%|███████ | 14/20 [00:31<00:13, 2.22s/it]\n 75%|███████▌ | 15/20 [00:33<00:11, 2.22s/it]\n 80%|████████ | 16/20 [00:35<00:08, 2.22s/it]\n 85%|████████▌ | 17/20 [00:37<00:06, 2.22s/it]\n 90%|█████████ | 18/20 [00:40<00:04, 2.22s/it]\n 95%|█████████▌| 19/20 [00:42<00:02, 2.22s/it]\n100%|██████████| 20/20 [00:44<00:00, 2.22s/it]\n100%|██████████| 20/20 [00:44<00:00, 2.22s/it]",
"metrics": {
"predict_time": 165.341866,
"total_time": 165.313479
},
"output": [
"https://replicate.delivery/pbxt/XYB4reBtZBQHCqi1ERPACmeI3w5xKVnPbEG2DCdv2PdvgEZRA/out-0.png"
],
"started_at": "2023-08-11T20:09:47.410187Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/4fucmblbgdnpax2y3tgr43532q",
"cancel": "https://api.replicate.com/v1/predictions/4fucmblbgdnpax2y3tgr43532q/cancel"
},
"version": "a00d0b7dcbb9c3fbb34ba87d2d5b46c56969c84a628bf778a7fdaec30b1b99c5"
}
Using seed: 14451
Prompt: ocean swells, by moebius
txt2img mode
0%| | 0/65 [00:00<?, ?it/s]
2%|▏ | 1/65 [00:01<01:51, 1.75s/it]
3%|▎ | 2/65 [00:03<01:50, 1.76s/it]
5%|▍ | 3/65 [00:05<01:49, 1.76s/it]
6%|▌ | 4/65 [00:07<01:47, 1.76s/it]
8%|▊ | 5/65 [00:08<01:45, 1.76s/it]
9%|▉ | 6/65 [00:10<01:44, 1.76s/it]
11%|█ | 7/65 [00:12<01:42, 1.76s/it]
12%|█▏ | 8/65 [00:14<01:40, 1.76s/it]
14%|█▍ | 9/65 [00:15<01:38, 1.76s/it]
15%|█▌ | 10/65 [00:17<01:36, 1.76s/it]
17%|█▋ | 11/65 [00:19<01:34, 1.76s/it]
18%|█▊ | 12/65 [00:21<01:33, 1.76s/it]
20%|██ | 13/65 [00:22<01:31, 1.76s/it]
22%|██▏ | 14/65 [00:24<01:29, 1.76s/it]
23%|██▎ | 15/65 [00:26<01:27, 1.76s/it]
25%|██▍ | 16/65 [00:28<01:26, 1.76s/it]
26%|██▌ | 17/65 [00:29<01:24, 1.76s/it]
28%|██▊ | 18/65 [00:31<01:22, 1.76s/it]
29%|██▉ | 19/65 [00:33<01:21, 1.76s/it]
31%|███ | 20/65 [00:35<01:19, 1.76s/it]
32%|███▏ | 21/65 [00:36<01:17, 1.76s/it]
34%|███▍ | 22/65 [00:38<01:15, 1.76s/it]
35%|███▌ | 23/65 [00:40<01:14, 1.77s/it]
37%|███▋ | 24/65 [00:42<01:12, 1.77s/it]
38%|███▊ | 25/65 [00:44<01:10, 1.77s/it]
40%|████ | 26/65 [00:45<01:08, 1.77s/it]
42%|████▏ | 27/65 [00:47<01:07, 1.77s/it]
43%|████▎ | 28/65 [00:49<01:05, 1.77s/it]
45%|████▍ | 29/65 [00:51<01:03, 1.77s/it]
46%|████▌ | 30/65 [00:52<01:01, 1.77s/it]
48%|████▊ | 31/65 [00:54<01:00, 1.77s/it]
49%|████▉ | 32/65 [00:56<00:58, 1.77s/it]
51%|█████ | 33/65 [00:58<00:56, 1.77s/it]
52%|█████▏ | 34/65 [00:59<00:54, 1.77s/it]
54%|█████▍ | 35/65 [01:01<00:53, 1.77s/it]
55%|█████▌ | 36/65 [01:03<00:51, 1.77s/it]
57%|█████▋ | 37/65 [01:05<00:49, 1.77s/it]
58%|█████▊ | 38/65 [01:07<00:47, 1.77s/it]
60%|██████ | 39/65 [01:08<00:46, 1.77s/it]
62%|██████▏ | 40/65 [01:10<00:44, 1.77s/it]
63%|██████▎ | 41/65 [01:12<00:42, 1.77s/it]
65%|██████▍ | 42/65 [01:14<00:40, 1.77s/it]
66%|██████▌ | 43/65 [01:15<00:39, 1.78s/it]
68%|██████▊ | 44/65 [01:17<00:37, 1.78s/it]
69%|██████▉ | 45/65 [01:19<00:35, 1.78s/it]
71%|███████ | 46/65 [01:21<00:33, 1.78s/it]
72%|███████▏ | 47/65 [01:23<00:31, 1.78s/it]
74%|███████▍ | 48/65 [01:24<00:30, 1.78s/it]
75%|███████▌ | 49/65 [01:26<00:28, 1.78s/it]
77%|███████▋ | 50/65 [01:28<00:26, 1.78s/it]
78%|███████▊ | 51/65 [01:30<00:24, 1.78s/it]
80%|████████ | 52/65 [01:31<00:23, 1.78s/it]
82%|████████▏ | 53/65 [01:33<00:21, 1.78s/it]
83%|████████▎ | 54/65 [01:35<00:19, 1.78s/it]
85%|████████▍ | 55/65 [01:37<00:17, 1.78s/it]
86%|████████▌ | 56/65 [01:39<00:16, 1.78s/it]
88%|████████▊ | 57/65 [01:40<00:14, 1.78s/it]
89%|████████▉ | 58/65 [01:42<00:12, 1.78s/it]
91%|█████████ | 59/65 [01:44<00:10, 1.78s/it]
92%|█████████▏| 60/65 [01:46<00:08, 1.78s/it]
94%|█████████▍| 61/65 [01:47<00:07, 1.78s/it]
95%|█████████▌| 62/65 [01:49<00:05, 1.78s/it]
97%|█████████▋| 63/65 [01:51<00:03, 1.78s/it]
98%|█████████▊| 64/65 [01:53<00:01, 1.78s/it]
100%|██████████| 65/65 [01:55<00:00, 1.78s/it]
100%|██████████| 65/65 [01:55<00:00, 1.77s/it]
0%| | 0/20 [00:00<?, ?it/s]
5%|▌ | 1/20 [00:02<00:42, 2.22s/it]
10%|█ | 2/20 [00:04<00:40, 2.22s/it]
15%|█▌ | 3/20 [00:06<00:37, 2.22s/it]
20%|██ | 4/20 [00:08<00:35, 2.22s/it]
25%|██▌ | 5/20 [00:11<00:33, 2.22s/it]
30%|███ | 6/20 [00:13<00:31, 2.22s/it]
35%|███▌ | 7/20 [00:15<00:28, 2.22s/it]
40%|████ | 8/20 [00:17<00:26, 2.22s/it]
45%|████▌ | 9/20 [00:19<00:24, 2.22s/it]
50%|█████ | 10/20 [00:22<00:22, 2.22s/it]
55%|█████▌ | 11/20 [00:24<00:19, 2.22s/it]
60%|██████ | 12/20 [00:26<00:17, 2.22s/it]
65%|██████▌ | 13/20 [00:28<00:15, 2.22s/it]
70%|███████ | 14/20 [00:31<00:13, 2.22s/it]
75%|███████▌ | 15/20 [00:33<00:11, 2.22s/it]
80%|████████ | 16/20 [00:35<00:08, 2.22s/it]
85%|████████▌ | 17/20 [00:37<00:06, 2.22s/it]
90%|█████████ | 18/20 [00:40<00:04, 2.22s/it]
95%|█████████▌| 19/20 [00:42<00:02, 2.22s/it]
100%|██████████| 20/20 [00:44<00:00, 2.22s/it]
100%|██████████| 20/20 [00:44<00:00, 2.22s/it]
This output was created using a different version of the model, stability-ai/sdxl:a00d0b7d.