You're looking at a specific version of this model. Jump to the model overview.
timothybrooks /instruct-pix2pix:30c1d0b9
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run timothybrooks/instruct-pix2pix using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"timothybrooks/instruct-pix2pix:30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f",
{
input: {
image: "https://replicate.delivery/pbxt/IBnrzJD8Vvz3rD7yF5W8ODnpeA5wcoNpP1RRiDutqW1nG8eF/example.jpeg",
prompt: "turn him into cyborg",
scheduler: "K_EULER_ANCESTRAL",
num_outputs: 1,
guidance_scale: 7.5,
num_inference_steps: 100,
image_guidance_scale: 1.5
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run timothybrooks/instruct-pix2pix using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"timothybrooks/instruct-pix2pix:30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f",
input={
"image": "https://replicate.delivery/pbxt/IBnrzJD8Vvz3rD7yF5W8ODnpeA5wcoNpP1RRiDutqW1nG8eF/example.jpeg",
"prompt": "turn him into cyborg",
"scheduler": "K_EULER_ANCESTRAL",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 100,
"image_guidance_scale": 1.5
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variableexport REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run timothybrooks/instruct-pix2pix using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f",
"input": {
"image": "https://replicate.delivery/pbxt/IBnrzJD8Vvz3rD7yF5W8ODnpeA5wcoNpP1RRiDutqW1nG8eF/example.jpeg",
"prompt": "turn him into cyborg",
"scheduler": "K_EULER_ANCESTRAL",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 100,
"image_guidance_scale": 1.5
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Pull and run timothybrooks/instruct-pix2pix using Cog (this will download the full model and run it in your local environment):
cog predict r8.im/timothybrooks/instruct-pix2pix@sha256:30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f \
-i 'image="https://replicate.delivery/pbxt/IBnrzJD8Vvz3rD7yF5W8ODnpeA5wcoNpP1RRiDutqW1nG8eF/example.jpeg"' \
-i 'prompt="turn him into cyborg"' \
-i 'scheduler="K_EULER_ANCESTRAL"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'num_inference_steps=100' \
-i 'image_guidance_scale=1.5'
To learn more, take a look at the Cog documentation.
Pull and run timothybrooks/instruct-pix2pix using Docker (this will download the full model and run it in your local environment):
docker run -d -p 5000:5000 --gpus=all r8.im/timothybrooks/instruct-pix2pix@sha256:30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "image": "https://replicate.delivery/pbxt/IBnrzJD8Vvz3rD7yF5W8ODnpeA5wcoNpP1RRiDutqW1nG8eF/example.jpeg", "prompt": "turn him into cyborg", "scheduler": "K_EULER_ANCESTRAL", "num_outputs": 1, "guidance_scale": 7.5, "num_inference_steps": 100, "image_guidance_scale": 1.5 } }' \ http://localhost:5000/predictions
Add a payment method to run this model.
Each run costs approximately $0.031. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-01-24T00:12:09.338020Z",
"created_at": "2023-01-24T00:12:01.075581Z",
"data_removed": false,
"error": null,
"id": "j5myyosmjbcpjcqesowun6idie",
"input": {
"image": "https://replicate.delivery/pbxt/IBnrzJD8Vvz3rD7yF5W8ODnpeA5wcoNpP1RRiDutqW1nG8eF/example.jpeg",
"prompt": "turn him into cyborg",
"scheduler": "K_EULER_ANCESTRAL",
"num_outputs": 1,
"guidance_scale": 7.5,
"num_inference_steps": 100,
"image_guidance_scale": 1.5
},
"logs": "Using seed: 49287\n 0%| | 0/100 [00:00<?, ?it/s]\n 2%|▏ | 2/100 [00:00<00:08, 11.55it/s]\n 4%|▍ | 4/100 [00:00<00:07, 13.57it/s]\n 6%|▌ | 6/100 [00:00<00:06, 14.33it/s]\n 8%|▊ | 8/100 [00:00<00:06, 14.36it/s]\n 10%|█ | 10/100 [00:00<00:06, 14.37it/s]\n 12%|█▏ | 12/100 [00:00<00:06, 14.28it/s]\n 14%|█▍ | 14/100 [00:01<00:06, 13.74it/s]\n 16%|█▌ | 16/100 [00:01<00:06, 13.40it/s]\n 18%|█▊ | 18/100 [00:01<00:06, 13.54it/s]\n 20%|██ | 20/100 [00:01<00:05, 13.78it/s]\n 22%|██▏ | 22/100 [00:01<00:05, 14.24it/s]\n 24%|██▍ | 24/100 [00:01<00:05, 14.35it/s]\n 26%|██▌ | 26/100 [00:01<00:05, 14.23it/s]\n 28%|██▊ | 28/100 [00:02<00:05, 14.06it/s]\n 30%|███ | 30/100 [00:02<00:04, 14.07it/s]\n 32%|███▏ | 32/100 [00:02<00:04, 14.57it/s]\n 34%|███▍ | 34/100 [00:02<00:04, 14.28it/s]\n 36%|███▌ | 36/100 [00:02<00:04, 14.23it/s]\n 38%|███▊ | 38/100 [00:02<00:04, 14.30it/s]\n 40%|████ | 40/100 [00:02<00:04, 14.16it/s]\n 42%|████▏ | 42/100 [00:02<00:04, 14.41it/s]\n 44%|████▍ | 44/100 [00:03<00:03, 14.42it/s]\n 46%|████▌ | 46/100 [00:03<00:03, 14.46it/s]\n 48%|████▊ | 48/100 [00:03<00:03, 14.72it/s]\n 50%|█████ | 50/100 [00:03<00:03, 14.77it/s]\n 52%|█████▏ | 52/100 [00:03<00:03, 14.87it/s]\n 54%|█████▍ | 54/100 [00:03<00:03, 14.31it/s]\n 56%|█████▌ | 56/100 [00:03<00:02, 14.74it/s]\n 58%|█████▊ | 58/100 [00:04<00:02, 14.89it/s]\n 60%|██████ | 60/100 [00:04<00:02, 15.05it/s]\n 62%|██████▏ | 62/100 [00:04<00:02, 15.12it/s]\n 64%|██████▍ | 64/100 [00:04<00:02, 15.25it/s]\n 66%|██████▌ | 66/100 [00:04<00:02, 15.39it/s]\n 68%|██████▊ | 68/100 [00:04<00:02, 15.39it/s]\n 70%|███████ | 70/100 [00:04<00:01, 15.48it/s]\n 72%|███████▏ | 72/100 [00:04<00:01, 15.60it/s]\n 74%|███████▍ | 74/100 [00:05<00:01, 15.86it/s]\n 76%|███████▌ | 76/100 [00:05<00:01, 15.79it/s]\n 78%|███████▊ | 78/100 [00:05<00:01, 15.65it/s]\n 80%|████████ | 80/100 [00:05<00:01, 15.12it/s]\n 82%|████████▏ | 82/100 [00:05<00:01, 15.35it/s]\n 84%|████████▍ | 84/100 [00:05<00:01, 15.28it/s]\n 86%|████████▌ | 86/100 [00:05<00:00, 15.38it/s]\n 88%|████████▊ | 88/100 [00:05<00:00, 15.53it/s]\n 90%|█████████ | 90/100 [00:06<00:00, 15.26it/s]\n 92%|█████████▏| 92/100 [00:06<00:00, 14.85it/s]\n 94%|█████████▍| 94/100 [00:06<00:00, 14.59it/s]\n 96%|█████████▌| 96/100 [00:06<00:00, 14.70it/s]\n 98%|█████████▊| 98/100 [00:06<00:00, 14.25it/s]\n100%|██████████| 100/100 [00:06<00:00, 14.10it/s]\n100%|██████████| 100/100 [00:06<00:00, 14.61it/s]",
"metrics": {
"predict_time": 8.209128,
"total_time": 8.262439
},
"output": [
"https://replicate.delivery/pbxt/kfL8fyBkHllh4kfEJbulrcnzWywUzZ2Fl1GkpXlb4n8xiaugA/out-0.png"
],
"started_at": "2023-01-24T00:12:01.128892Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/j5myyosmjbcpjcqesowun6idie",
"cancel": "https://api.replicate.com/v1/predictions/j5myyosmjbcpjcqesowun6idie/cancel"
},
"version": "30c1d0b916a6f8efce20493f5d61ee27491ab2a60437c13c588468b9810ec23f"
}
Using seed: 49287
0%| | 0/100 [00:00<?, ?it/s]
2%|▏ | 2/100 [00:00<00:08, 11.55it/s]
4%|▍ | 4/100 [00:00<00:07, 13.57it/s]
6%|▌ | 6/100 [00:00<00:06, 14.33it/s]
8%|▊ | 8/100 [00:00<00:06, 14.36it/s]
10%|█ | 10/100 [00:00<00:06, 14.37it/s]
12%|█▏ | 12/100 [00:00<00:06, 14.28it/s]
14%|█▍ | 14/100 [00:01<00:06, 13.74it/s]
16%|█▌ | 16/100 [00:01<00:06, 13.40it/s]
18%|█▊ | 18/100 [00:01<00:06, 13.54it/s]
20%|██ | 20/100 [00:01<00:05, 13.78it/s]
22%|██▏ | 22/100 [00:01<00:05, 14.24it/s]
24%|██▍ | 24/100 [00:01<00:05, 14.35it/s]
26%|██▌ | 26/100 [00:01<00:05, 14.23it/s]
28%|██▊ | 28/100 [00:02<00:05, 14.06it/s]
30%|███ | 30/100 [00:02<00:04, 14.07it/s]
32%|███▏ | 32/100 [00:02<00:04, 14.57it/s]
34%|███▍ | 34/100 [00:02<00:04, 14.28it/s]
36%|███▌ | 36/100 [00:02<00:04, 14.23it/s]
38%|███▊ | 38/100 [00:02<00:04, 14.30it/s]
40%|████ | 40/100 [00:02<00:04, 14.16it/s]
42%|████▏ | 42/100 [00:02<00:04, 14.41it/s]
44%|████▍ | 44/100 [00:03<00:03, 14.42it/s]
46%|████▌ | 46/100 [00:03<00:03, 14.46it/s]
48%|████▊ | 48/100 [00:03<00:03, 14.72it/s]
50%|█████ | 50/100 [00:03<00:03, 14.77it/s]
52%|█████▏ | 52/100 [00:03<00:03, 14.87it/s]
54%|█████▍ | 54/100 [00:03<00:03, 14.31it/s]
56%|█████▌ | 56/100 [00:03<00:02, 14.74it/s]
58%|█████▊ | 58/100 [00:04<00:02, 14.89it/s]
60%|██████ | 60/100 [00:04<00:02, 15.05it/s]
62%|██████▏ | 62/100 [00:04<00:02, 15.12it/s]
64%|██████▍ | 64/100 [00:04<00:02, 15.25it/s]
66%|██████▌ | 66/100 [00:04<00:02, 15.39it/s]
68%|██████▊ | 68/100 [00:04<00:02, 15.39it/s]
70%|███████ | 70/100 [00:04<00:01, 15.48it/s]
72%|███████▏ | 72/100 [00:04<00:01, 15.60it/s]
74%|███████▍ | 74/100 [00:05<00:01, 15.86it/s]
76%|███████▌ | 76/100 [00:05<00:01, 15.79it/s]
78%|███████▊ | 78/100 [00:05<00:01, 15.65it/s]
80%|████████ | 80/100 [00:05<00:01, 15.12it/s]
82%|████████▏ | 82/100 [00:05<00:01, 15.35it/s]
84%|████████▍ | 84/100 [00:05<00:01, 15.28it/s]
86%|████████▌ | 86/100 [00:05<00:00, 15.38it/s]
88%|████████▊ | 88/100 [00:05<00:00, 15.53it/s]
90%|█████████ | 90/100 [00:06<00:00, 15.26it/s]
92%|█████████▏| 92/100 [00:06<00:00, 14.85it/s]
94%|█████████▍| 94/100 [00:06<00:00, 14.59it/s]
96%|█████████▌| 96/100 [00:06<00:00, 14.70it/s]
98%|█████████▊| 98/100 [00:06<00:00, 14.25it/s]
100%|██████████| 100/100 [00:06<00:00, 14.10it/s]
100%|██████████| 100/100 [00:06<00:00, 14.61it/s]