You're looking at a specific version of this model. Jump to the model overview.
tommoore515 /material_stable_diffusion:3b5c0242
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449",
{
input: {
width: 512,
height: 512,
prompt: "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k",
num_outputs: 1,
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"tommoore515/material_stable_diffusion:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449",
input={
"width": 512,
"height": 512,
"prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449",
"input": {
"width": 512,
"height": 512,
"prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449 \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k"' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/tommoore515/material_stable_diffusion@sha256:3b5c0242f8925a4ab6c79b4c51e9b4ce6374e9b07b5e8461d89e692fd0faa449
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k", "num_outputs": 1, "guidance_scale": 7.5, "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.043. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-09-07T01:14:14.906612Z",
"created_at": "2022-09-07T01:13:59.677073Z",
"data_removed": false,
"error": null,
"id": "6o5jjvornrcwtadmvv7qkty2z4",
"input": {
"width": 512,
"height": 512,
"prompt": "Mossy Runic Bricks seamless texture, trending on artstation, stone, moss, base color, albedo, 4k",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 46183\n\n0it [00:00, ?it/s]\n1it [00:00, 5.73it/s]\n2it [00:00, 4.17it/s]\n3it [00:00, 3.93it/s]\n4it [00:01, 3.83it/s]\n5it [00:01, 3.77it/s]\n6it [00:01, 3.73it/s]\n7it [00:01, 3.70it/s]\n8it [00:02, 3.71it/s]\n9it [00:02, 3.68it/s]\n10it [00:02, 3.68it/s]\n11it [00:02, 3.67it/s]\n12it [00:03, 3.68it/s]\n13it [00:03, 3.66it/s]\n14it [00:03, 3.66it/s]\n15it [00:04, 3.65it/s]\n16it [00:04, 3.65it/s]\n17it [00:04, 3.65it/s]\n18it [00:04, 3.65it/s]\n19it [00:05, 3.65it/s]\n20it [00:05, 3.63it/s]\n21it [00:05, 3.64it/s]\n22it [00:05, 3.63it/s]\n23it [00:06, 3.64it/s]\n24it [00:06, 3.64it/s]\n25it [00:06, 3.65it/s]\n26it [00:07, 3.64it/s]\n27it [00:07, 3.63it/s]\n28it [00:07, 3.63it/s]\n29it [00:07, 3.63it/s]\n30it [00:08, 3.63it/s]\n31it [00:08, 3.63it/s]\n32it [00:08, 3.62it/s]\n33it [00:08, 3.62it/s]\n34it [00:09, 3.62it/s]\n35it [00:09, 3.62it/s]\n36it [00:09, 3.62it/s]\n37it [00:10, 3.61it/s]\n38it [00:10, 3.61it/s]\n39it [00:10, 3.62it/s]\n40it [00:10, 3.62it/s]\n41it [00:11, 3.61it/s]\n42it [00:11, 3.61it/s]\n43it [00:11, 3.61it/s]\n44it [00:12, 3.61it/s]\n45it [00:12, 3.61it/s]\n46it [00:12, 3.62it/s]\n47it [00:12, 3.62it/s]\n48it [00:13, 3.62it/s]\n49it [00:13, 3.61it/s]\n50it [00:13, 3.61it/s]\n50it [00:13, 3.66it/s]",
"metrics": {
"predict_time": 15.037458,
"total_time": 15.229539
},
"output": [
"https://replicate.delivery/mgxm/a5f7f356-99b4-4b7c-85b9-b084960f7552/out-0.png"
],
"started_at": "2022-09-07T01:13:59.869154Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/6o5jjvornrcwtadmvv7qkty2z4",
"cancel": "https://api.replicate.com/v1/predictions/6o5jjvornrcwtadmvv7qkty2z4/cancel"
},
"version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9"
}
Using seed: 46183
0it [00:00, ?it/s]
1it [00:00, 5.73it/s]
2it [00:00, 4.17it/s]
3it [00:00, 3.93it/s]
4it [00:01, 3.83it/s]
5it [00:01, 3.77it/s]
6it [00:01, 3.73it/s]
7it [00:01, 3.70it/s]
8it [00:02, 3.71it/s]
9it [00:02, 3.68it/s]
10it [00:02, 3.68it/s]
11it [00:02, 3.67it/s]
12it [00:03, 3.68it/s]
13it [00:03, 3.66it/s]
14it [00:03, 3.66it/s]
15it [00:04, 3.65it/s]
16it [00:04, 3.65it/s]
17it [00:04, 3.65it/s]
18it [00:04, 3.65it/s]
19it [00:05, 3.65it/s]
20it [00:05, 3.63it/s]
21it [00:05, 3.64it/s]
22it [00:05, 3.63it/s]
23it [00:06, 3.64it/s]
24it [00:06, 3.64it/s]
25it [00:06, 3.65it/s]
26it [00:07, 3.64it/s]
27it [00:07, 3.63it/s]
28it [00:07, 3.63it/s]
29it [00:07, 3.63it/s]
30it [00:08, 3.63it/s]
31it [00:08, 3.63it/s]
32it [00:08, 3.62it/s]
33it [00:08, 3.62it/s]
34it [00:09, 3.62it/s]
35it [00:09, 3.62it/s]
36it [00:09, 3.62it/s]
37it [00:10, 3.61it/s]
38it [00:10, 3.61it/s]
39it [00:10, 3.62it/s]
40it [00:10, 3.62it/s]
41it [00:11, 3.61it/s]
42it [00:11, 3.61it/s]
43it [00:11, 3.61it/s]
44it [00:12, 3.61it/s]
45it [00:12, 3.61it/s]
46it [00:12, 3.62it/s]
47it [00:12, 3.62it/s]
48it [00:13, 3.62it/s]
49it [00:13, 3.61it/s]
50it [00:13, 3.61it/s]
50it [00:13, 3.66it/s]
This example was created by a different version, tommoore515/material_stable_diffusion:56f26876.