Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
tommoore515 /material_stable_diffusion:56f26876
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"tommoore515/material_stable_diffusion:56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9",
{
input: {
width: 512,
height: 512,
prompt: "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k",
num_outputs: 1,
guidance_scale: 7.5,
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"tommoore515/material_stable_diffusion:56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9",
input={
"width": 512,
"height": 512,
"prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run tommoore515/material_stable_diffusion using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9",
"input": {
"width": 512,
"height": 512,
"prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2022-09-07T01:20:57.808362Z",
"created_at": "2022-09-07T01:20:41.996288Z",
"data_removed": false,
"error": null,
"id": "v2dsko5lc5aglm4osf4tvvsfsm",
"input": {
"width": 512,
"height": 512,
"prompt": "Tree bark seamless photoscan texture, trending on artstation, base color, albedo, 4k",
"num_outputs": 1,
"guidance_scale": 7.5,
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 62103\n\n0it [00:00, ?it/s]\n1it [00:00, 5.73it/s]\n2it [00:00, 4.03it/s]\n3it [00:00, 3.76it/s]\n4it [00:01, 3.64it/s]\n5it [00:01, 3.56it/s]\n6it [00:01, 3.54it/s]\n7it [00:01, 3.52it/s]\n8it [00:02, 3.50it/s]\n9it [00:02, 3.49it/s]\n10it [00:02, 3.49it/s]\n11it [00:03, 3.49it/s]\n12it [00:03, 3.47it/s]\n13it [00:03, 3.48it/s]\n14it [00:03, 3.47it/s]\n15it [00:04, 3.47it/s]\n16it [00:04, 3.47it/s]\n17it [00:04, 3.47it/s]\n18it [00:05, 3.46it/s]\n19it [00:05, 3.45it/s]\n20it [00:05, 3.45it/s]\n21it [00:05, 3.45it/s]\n22it [00:06, 3.45it/s]\n23it [00:06, 3.44it/s]\n24it [00:06, 3.44it/s]\n25it [00:07, 3.45it/s]\n26it [00:07, 3.44it/s]\n27it [00:07, 3.44it/s]\n28it [00:07, 3.44it/s]\n29it [00:08, 3.43it/s]\n30it [00:08, 3.43it/s]\n31it [00:08, 3.42it/s]\n32it [00:09, 3.43it/s]\n33it [00:09, 3.42it/s]\n34it [00:09, 3.42it/s]\n35it [00:10, 3.42it/s]\n36it [00:10, 3.43it/s]\n37it [00:10, 3.42it/s]\n38it [00:10, 3.42it/s]\n39it [00:11, 3.42it/s]\n40it [00:11, 3.42it/s]\n41it [00:11, 3.42it/s]\n42it [00:12, 3.41it/s]\n43it [00:12, 3.41it/s]\n44it [00:12, 3.41it/s]\n45it [00:12, 3.41it/s]\n46it [00:13, 3.41it/s]\n47it [00:13, 3.41it/s]\n48it [00:13, 3.40it/s]\n49it [00:14, 3.40it/s]\n50it [00:14, 3.40it/s]\n50it [00:14, 3.46it/s]",
"metrics": {
"predict_time": 15.611519,
"total_time": 15.812074
},
"output": [
"https://replicate.delivery/mgxm/7d3bc46c-612f-42cb-9347-317b2db1d3d6/out-0.png"
],
"started_at": "2022-09-07T01:20:42.196843Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/v2dsko5lc5aglm4osf4tvvsfsm",
"cancel": "https://api.replicate.com/v1/predictions/v2dsko5lc5aglm4osf4tvvsfsm/cancel"
},
"version": "56f26876a159c10b429c382f66ccda648c1d5678d7ce15ed010734b715be5ab9"
}
Using seed: 62103
0it [00:00, ?it/s]
1it [00:00, 5.73it/s]
2it [00:00, 4.03it/s]
3it [00:00, 3.76it/s]
4it [00:01, 3.64it/s]
5it [00:01, 3.56it/s]
6it [00:01, 3.54it/s]
7it [00:01, 3.52it/s]
8it [00:02, 3.50it/s]
9it [00:02, 3.49it/s]
10it [00:02, 3.49it/s]
11it [00:03, 3.49it/s]
12it [00:03, 3.47it/s]
13it [00:03, 3.48it/s]
14it [00:03, 3.47it/s]
15it [00:04, 3.47it/s]
16it [00:04, 3.47it/s]
17it [00:04, 3.47it/s]
18it [00:05, 3.46it/s]
19it [00:05, 3.45it/s]
20it [00:05, 3.45it/s]
21it [00:05, 3.45it/s]
22it [00:06, 3.45it/s]
23it [00:06, 3.44it/s]
24it [00:06, 3.44it/s]
25it [00:07, 3.45it/s]
26it [00:07, 3.44it/s]
27it [00:07, 3.44it/s]
28it [00:07, 3.44it/s]
29it [00:08, 3.43it/s]
30it [00:08, 3.43it/s]
31it [00:08, 3.42it/s]
32it [00:09, 3.43it/s]
33it [00:09, 3.42it/s]
34it [00:09, 3.42it/s]
35it [00:10, 3.42it/s]
36it [00:10, 3.43it/s]
37it [00:10, 3.42it/s]
38it [00:10, 3.42it/s]
39it [00:11, 3.42it/s]
40it [00:11, 3.42it/s]
41it [00:11, 3.42it/s]
42it [00:12, 3.41it/s]
43it [00:12, 3.41it/s]
44it [00:12, 3.41it/s]
45it [00:12, 3.41it/s]
46it [00:13, 3.41it/s]
47it [00:13, 3.41it/s]
48it [00:13, 3.40it/s]
49it [00:14, 3.40it/s]
50it [00:14, 3.40it/s]
50it [00:14, 3.46it/s]