You're looking at a specific version of this model. Jump to the model overview.
yosun /sdxl-corgicam:8f46d5ad
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run yosun/sdxl-corgicam using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"yosun/sdxl-corgicam:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc",
{
input: {
width: 512,
height: 512,
prompt: "TOK on an avocado couch",
refine: "no_refiner",
scheduler: "K_EULER",
lora_scale: 0.6,
num_outputs: 1,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.8,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run yosun/sdxl-corgicam using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"yosun/sdxl-corgicam:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc",
input={
"width": 512,
"height": 512,
"prompt": "TOK on an avocado couch",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run yosun/sdxl-corgicam using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "yosun/sdxl-corgicam:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc",
"input": {
"width": 512,
"height": 512,
"prompt": "TOK on an avocado couch",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/yosun/sdxl-corgicam@sha256:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc \
-i 'width=512' \
-i 'height=512' \
-i 'prompt="TOK on an avocado couch"' \
-i 'refine="no_refiner"' \
-i 'scheduler="K_EULER"' \
-i 'lora_scale=0.6' \
-i 'num_outputs=1' \
-i 'guidance_scale=7.5' \
-i 'apply_watermark=true' \
-i 'high_noise_frac=0.8' \
-i 'negative_prompt=""' \
-i 'prompt_strength=0.8' \
-i 'num_inference_steps=50'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/yosun/sdxl-corgicam@sha256:8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 512, "height": 512, "prompt": "TOK on an avocado couch", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-11-06T08:24:03.397047Z",
"created_at": "2023-11-06T08:23:56.944345Z",
"data_removed": false,
"error": null,
"id": "iy52nftb53bmkuuf3ks4p3a4l4",
"input": {
"width": 512,
"height": 512,
"prompt": "TOK on an avocado couch",
"refine": "no_refiner",
"scheduler": "K_EULER",
"lora_scale": 0.6,
"num_outputs": 1,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.8,
"num_inference_steps": 50
},
"logs": "Using seed: 41889\nskipping loading .. weights already loaded\nPrompt: <s0><s1> on an avocado couch\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:05, 8.82it/s]\n 4%|▍ | 2/50 [00:00<00:05, 9.01it/s]\n 6%|▌ | 3/50 [00:00<00:05, 9.07it/s]\n 8%|▊ | 4/50 [00:00<00:05, 9.10it/s]\n 10%|█ | 5/50 [00:00<00:04, 9.08it/s]\n 12%|█▏ | 6/50 [00:00<00:04, 8.90it/s]\n 14%|█▍ | 7/50 [00:00<00:04, 8.99it/s]\n 16%|█▌ | 8/50 [00:00<00:04, 9.08it/s]\n 18%|█▊ | 9/50 [00:00<00:04, 9.14it/s]\n 20%|██ | 10/50 [00:01<00:04, 9.18it/s]\n 22%|██▏ | 11/50 [00:01<00:04, 9.36it/s]\n 24%|██▍ | 12/50 [00:01<00:04, 9.49it/s]\n 26%|██▌ | 13/50 [00:01<00:03, 9.59it/s]\n 28%|██▊ | 14/50 [00:01<00:03, 9.65it/s]\n 30%|███ | 15/50 [00:01<00:03, 9.59it/s]\n 32%|███▏ | 16/50 [00:01<00:03, 9.43it/s]\n 34%|███▍ | 17/50 [00:01<00:03, 9.35it/s]\n 36%|███▌ | 18/50 [00:01<00:03, 9.30it/s]\n 38%|███▊ | 19/50 [00:02<00:03, 9.28it/s]\n 40%|████ | 20/50 [00:02<00:03, 9.28it/s]\n 42%|████▏ | 21/50 [00:02<00:03, 9.28it/s]\n 44%|████▍ | 22/50 [00:02<00:02, 9.43it/s]\n 46%|████▌ | 23/50 [00:02<00:02, 9.47it/s]\n 48%|████▊ | 24/50 [00:02<00:02, 9.57it/s]\n 50%|█████ | 25/50 [00:02<00:02, 9.27it/s]\n 52%|█████▏ | 26/50 [00:02<00:02, 9.28it/s]\n 54%|█████▍ | 27/50 [00:02<00:02, 9.27it/s]\n 56%|█████▌ | 28/50 [00:03<00:02, 9.24it/s]\n 58%|█████▊ | 29/50 [00:03<00:02, 9.26it/s]\n 60%|██████ | 30/50 [00:03<00:02, 9.43it/s]\n 62%|██████▏ | 31/50 [00:03<00:01, 9.53it/s]\n 64%|██████▍ | 32/50 [00:03<00:01, 9.60it/s]\n 66%|██████▌ | 33/50 [00:03<00:01, 9.64it/s]\n 68%|██████▊ | 34/50 [00:03<00:01, 9.64it/s]\n 70%|███████ | 35/50 [00:03<00:01, 9.66it/s]\n 72%|███████▏ | 36/50 [00:03<00:01, 9.69it/s]\n 74%|███████▍ | 37/50 [00:03<00:01, 9.72it/s]\n 76%|███████▌ | 38/50 [00:04<00:01, 9.75it/s]\n 78%|███████▊ | 39/50 [00:04<00:01, 9.78it/s]\n 80%|████████ | 40/50 [00:04<00:01, 9.79it/s]\n 82%|████████▏ | 41/50 [00:04<00:00, 9.79it/s]\n 84%|████████▍ | 42/50 [00:04<00:00, 9.78it/s]\n 86%|████████▌ | 43/50 [00:04<00:00, 9.73it/s]\n 88%|████████▊ | 44/50 [00:04<00:00, 9.44it/s]\n 90%|█████████ | 45/50 [00:04<00:00, 9.34it/s]\n 92%|█████████▏| 46/50 [00:04<00:00, 9.32it/s]\n 94%|█████████▍| 47/50 [00:04<00:00, 9.46it/s]\n 96%|█████████▌| 48/50 [00:05<00:00, 9.56it/s]\n 98%|█████████▊| 49/50 [00:05<00:00, 9.64it/s]\n100%|██████████| 50/50 [00:05<00:00, 9.70it/s]\n100%|██████████| 50/50 [00:05<00:00, 9.44it/s]",
"metrics": {
"predict_time": 6.624096,
"total_time": 6.452702
},
"output": [
"https://replicate.delivery/pbxt/eRfJQkHTdghH8Uvd4hEDfw0w1MOuVZiE9SOaUb1L080FlKrjA/out-0.png"
],
"started_at": "2023-11-06T08:23:56.772951Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/iy52nftb53bmkuuf3ks4p3a4l4",
"cancel": "https://api.replicate.com/v1/predictions/iy52nftb53bmkuuf3ks4p3a4l4/cancel"
},
"version": "8f46d5ad1a5eb3234a52dece4825323a1d00c8b0c6a98b66203c95fb8d207afc"
}
Using seed: 41889
skipping loading .. weights already loaded
Prompt: <s0><s1> on an avocado couch
txt2img mode
0%| | 0/50 [00:00<?, ?it/s]
2%|▏ | 1/50 [00:00<00:05, 8.82it/s]
4%|▍ | 2/50 [00:00<00:05, 9.01it/s]
6%|▌ | 3/50 [00:00<00:05, 9.07it/s]
8%|▊ | 4/50 [00:00<00:05, 9.10it/s]
10%|█ | 5/50 [00:00<00:04, 9.08it/s]
12%|█▏ | 6/50 [00:00<00:04, 8.90it/s]
14%|█▍ | 7/50 [00:00<00:04, 8.99it/s]
16%|█▌ | 8/50 [00:00<00:04, 9.08it/s]
18%|█▊ | 9/50 [00:00<00:04, 9.14it/s]
20%|██ | 10/50 [00:01<00:04, 9.18it/s]
22%|██▏ | 11/50 [00:01<00:04, 9.36it/s]
24%|██▍ | 12/50 [00:01<00:04, 9.49it/s]
26%|██▌ | 13/50 [00:01<00:03, 9.59it/s]
28%|██▊ | 14/50 [00:01<00:03, 9.65it/s]
30%|███ | 15/50 [00:01<00:03, 9.59it/s]
32%|███▏ | 16/50 [00:01<00:03, 9.43it/s]
34%|███▍ | 17/50 [00:01<00:03, 9.35it/s]
36%|███▌ | 18/50 [00:01<00:03, 9.30it/s]
38%|███▊ | 19/50 [00:02<00:03, 9.28it/s]
40%|████ | 20/50 [00:02<00:03, 9.28it/s]
42%|████▏ | 21/50 [00:02<00:03, 9.28it/s]
44%|████▍ | 22/50 [00:02<00:02, 9.43it/s]
46%|████▌ | 23/50 [00:02<00:02, 9.47it/s]
48%|████▊ | 24/50 [00:02<00:02, 9.57it/s]
50%|█████ | 25/50 [00:02<00:02, 9.27it/s]
52%|█████▏ | 26/50 [00:02<00:02, 9.28it/s]
54%|█████▍ | 27/50 [00:02<00:02, 9.27it/s]
56%|█████▌ | 28/50 [00:03<00:02, 9.24it/s]
58%|█████▊ | 29/50 [00:03<00:02, 9.26it/s]
60%|██████ | 30/50 [00:03<00:02, 9.43it/s]
62%|██████▏ | 31/50 [00:03<00:01, 9.53it/s]
64%|██████▍ | 32/50 [00:03<00:01, 9.60it/s]
66%|██████▌ | 33/50 [00:03<00:01, 9.64it/s]
68%|██████▊ | 34/50 [00:03<00:01, 9.64it/s]
70%|███████ | 35/50 [00:03<00:01, 9.66it/s]
72%|███████▏ | 36/50 [00:03<00:01, 9.69it/s]
74%|███████▍ | 37/50 [00:03<00:01, 9.72it/s]
76%|███████▌ | 38/50 [00:04<00:01, 9.75it/s]
78%|███████▊ | 39/50 [00:04<00:01, 9.78it/s]
80%|████████ | 40/50 [00:04<00:01, 9.79it/s]
82%|████████▏ | 41/50 [00:04<00:00, 9.79it/s]
84%|████████▍ | 42/50 [00:04<00:00, 9.78it/s]
86%|████████▌ | 43/50 [00:04<00:00, 9.73it/s]
88%|████████▊ | 44/50 [00:04<00:00, 9.44it/s]
90%|█████████ | 45/50 [00:04<00:00, 9.34it/s]
92%|█████████▏| 46/50 [00:04<00:00, 9.32it/s]
94%|█████████▍| 47/50 [00:04<00:00, 9.46it/s]
96%|█████████▌| 48/50 [00:05<00:00, 9.56it/s]
98%|█████████▊| 49/50 [00:05<00:00, 9.64it/s]
100%|██████████| 50/50 [00:05<00:00, 9.70it/s]
100%|██████████| 50/50 [00:05<00:00, 9.44it/s]