You're looking at a specific version of this model. Jump to the model overview.

zelenioncode /dreambooth_sdxl:fb447540

Input schema

The fields you can use to run this model with an API. If you don’t give a value for a field its default value will be used.

Field Type Default value Description
gender
string (enum)
woman

Options:

woman, man

Gender of person in training photo ( woman or man )
name_model
string
Dreambooth_sdxl
Give name for your .safetensors model
send_to_huggingface
boolean
False
Send folder have .safetensors model direct to your huggingface account
token_huggingface
string
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
If you use huggingface, enter your API TOKEN
repo_id_huggingface
string
WGlint/SafetensorsFromReplicate
If you use huggingface, enter repo_id to one of your project
folder_huggingface
string
Enter a path to download your .safetensors model. Default = ./
input
string
https://huggingface.co/WGlint/SafetensorsFromReplicate/resolve/main/input.zip
Direct link download with training picture (Only .zip file and picture in 1024px/1024px !)
repeat_input
integer
10

Min: 1

Max: 1000

Repeat of time GPU look training data ( e.g. 15 pictures * 100 repeat = 1500 steps )
use_class_reg
boolean
False
Use regulat classification picture
repeat_class_reg
integer
1

Min: 1

Max: 1000

Repeat of time GPU look class reg picture ( e.g. 5000 pictures * 2 repeat = 10000 steps cache latents )
class_reg
string
Direct link download for regular classification picture ( Default = class image of gender you use )
model_sdxl
string (enum)
Stable Diffusion XL

Options:

Stable Diffusion XL, RealVisXL_2, RealVisXL_3

Choice a model pretrained can run for SDXL training with dreambooth
num_cpu_threads_per_process
integer
4

Min: 1

Max: 10

Number CPU thread use with accelerate module
resolution
string
1024,1024
Resolution of your training picture data. WARNING ! Write in this formet : width,height ( e.g. 1024,1024 )
vae
string
stabilityai/vae
VAE use for create model training
lr_scheduler_num_cycles
integer
1

Min: 1

Max: 1000

Num learning rate cycles for your training
max_data_loader_n_workers
integer
0

Max: 100

Maximun data loader for n workers you set
learning_rate_te1
number
0.00001
Value for learning_rate te1
learning_rate_te2
number
0.00001
Value for learning_rate te2
learning_rate
number
0.00001
Value for learning_rate
lr_scheduler
string (enum)
constant

Options:

constant, linear, cosine, cosine_with_restarts, polynomial, constant_with_warmup, adafactor

Method use for learning rate scheduler
train_batch_size
integer
1

Min: 1

Max: 64

Select value for device max train step and speed the generation, WARINING ! High value = High value to have CUDA Memory
max_train_steps
integer
100

Min: 10

Max: 25000

Number of step you want for your training, and in average 1000 steps = 10 minutes
save_every_n_epochs
integer
1

Min: 1

Max: 64

Number of epochs model you want
mixed_precision
string (enum)
fp16

Options:

no, fp16, bf16

Select if you want to use miwed precision
save_precision
string (enum)
fp16

Options:

no, fp16, bf16

Select if you want to use save precision
optimizer_type
string (enum)
AdaFactor

Options:

AdamW, AdamW8bit, PagedAdamW, PagedAdamW8bit, PagedAdamW32bit, Lion8bit, PagedLion8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation, DAdaptAdaGrad, DAdaptAdam, DAdaptAdan, DAdaptAdanIP, DAdaptLion, DAdaptSGD, AdaFactor

Select a optimiser type
scale_parameter
boolean
False
Use scale parameter
relative_step
boolean
False
Use relative step
warmup_init
boolean
False
Use warmup init
weight_decay
number
0.01
Give a float value for weight decay
bucket_reso_steps
integer
64

Min: 1

Max: 1000

Give a int value for bucket reso steps
save_every_n_steps
integer
1

Min: 1

Max: 5

Number of .safetensors model you want, if you select 2 with 2000 max train steps, you well get 2 .safetensors. 1 with 1000 steps and 1 with 2000 steps
noise_offset
number
0
Give a float value for noise offset
max_grad_norm
number
0
Give a float value for max grad norm
cache_latents_to_disk
boolean
True
None
cache_latents
boolean
True
None
mem_eff_attn
boolean
True
None
gradient_checkpointing
boolean
True
None
full_fp16
boolean
True
None
xformers
boolean
True
None
bucket_no_upscale
boolean
True
None
no_half_vae
boolean
True
None
train_text_encoder
boolean
True
None
learning_rate_te1_bool
number
0.000003
value for learning rate te1 bool
learning_rate_te2_bool
number
0
value for learning rate te2 bool

Output schema

The shape of the response you’ll get when you run this model with an API.

Schema
{'title': 'Output', 'type': 'string'}