Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
zhouzhengjun /lora_openjourney_v4:f8e5074f
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6",
{
input: {
image: "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png",
width: 512,
height: 512,
prompt: "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,",
lora_urls: "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors",
scheduler: "K_EULER_ANCESTRAL",
lora_scales: "0.8",
num_outputs: 1,
guidance_scale: 6.84,
negative_prompt: "easynegative, bad-picture-chill-75v",
prompt_strength: 0.61,
num_inference_steps: 63
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6",
input={
"image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png",
"width": 512,
"height": 512,
"prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,",
"lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors",
"scheduler": "K_EULER_ANCESTRAL",
"lora_scales": "0.8",
"num_outputs": 1,
"guidance_scale": 6.84,
"negative_prompt": "easynegative, bad-picture-chill-75v",
"prompt_strength": 0.61,
"num_inference_steps": 63
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run zhouzhengjun/lora_openjourney_v4 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "zhouzhengjun/lora_openjourney_v4:f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6",
"input": {
"image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png",
"width": 512,
"height": 512,
"prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,",
"lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors",
"scheduler": "K_EULER_ANCESTRAL",
"lora_scales": "0.8",
"num_outputs": 1,
"guidance_scale": 6.84,
"negative_prompt": "easynegative, bad-picture-chill-75v",
"prompt_strength": 0.61,
"num_inference_steps": 63
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-04-20T12:47:17.776590Z",
"created_at": "2023-04-20T12:47:11.376315Z",
"data_removed": false,
"error": null,
"id": "aup3l2wypzhzpo2kd2qf22bm54",
"input": {
"image": "https://replicate.delivery/pbxt/IgW2N670p6x6aWtSvw3YPIgLmRClfPdhAvF7sO8IG9zJhyrg/out-0.png",
"width": 512,
"height": 512,
"prompt": "(((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,",
"lora_urls": "https://replicate.delivery/pbxt/Mf7QBwNXrehQ3k6GwMPpi8bqy0cer9x1NqogXVWylWC9l6YhA/tmp28kwa2ceclexz5tc90001zun1iy5b8x3wzip.safetensors",
"scheduler": "K_EULER_ANCESTRAL",
"lora_scales": "0.8",
"num_outputs": 1,
"guidance_scale": 6.84,
"negative_prompt": "easynegative, bad-picture-chill-75v",
"prompt_strength": 0.61,
"num_inference_steps": 63
},
"logs": "Using seed: 53686\nGenerating image of 768 x 768 with prompt: (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,\nThe requested LoRAs are loaded.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\nThe config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.\nThe following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['twintails, halterdress,']\n 0%| | 0/38 [00:00<?, ?it/s]\n 3%|▎ | 1/38 [00:00<00:04, 8.40it/s]\n 5%|▌ | 2/38 [00:00<00:04, 8.36it/s]\n 8%|▊ | 3/38 [00:00<00:04, 8.34it/s]\n 11%|█ | 4/38 [00:00<00:04, 8.30it/s]\n 13%|█▎ | 5/38 [00:00<00:03, 8.33it/s]\n 16%|█▌ | 6/38 [00:00<00:03, 8.36it/s]\n 18%|█▊ | 7/38 [00:00<00:03, 8.37it/s]\n 21%|██ | 8/38 [00:00<00:03, 8.39it/s]\n 24%|██▎ | 9/38 [00:01<00:03, 8.40it/s]\n 26%|██▋ | 10/38 [00:01<00:03, 8.42it/s]\n 29%|██▉ | 11/38 [00:01<00:03, 8.40it/s]\n 32%|███▏ | 12/38 [00:01<00:03, 8.36it/s]\n 34%|███▍ | 13/38 [00:01<00:03, 8.33it/s]\n 37%|███▋ | 14/38 [00:01<00:02, 8.37it/s]\n 39%|███▉ | 15/38 [00:01<00:02, 8.38it/s]\n 42%|████▏ | 16/38 [00:01<00:02, 8.40it/s]\n 45%|████▍ | 17/38 [00:02<00:02, 8.40it/s]\n 47%|████▋ | 18/38 [00:02<00:02, 8.42it/s]\n 50%|█████ | 19/38 [00:02<00:02, 8.41it/s]\n 53%|█████▎ | 20/38 [00:02<00:02, 8.41it/s]\n 55%|█████▌ | 21/38 [00:02<00:02, 8.25it/s]\n 58%|█████▊ | 22/38 [00:02<00:01, 8.29it/s]\n 61%|██████ | 23/38 [00:02<00:01, 8.30it/s]\n 63%|██████▎ | 24/38 [00:02<00:01, 8.29it/s]\n 66%|██████▌ | 25/38 [00:02<00:01, 8.32it/s]\n 68%|██████▊ | 26/38 [00:03<00:01, 8.34it/s]\n 71%|███████ | 27/38 [00:03<00:01, 8.35it/s]\n 74%|███████▎ | 28/38 [00:03<00:01, 8.32it/s]\n 76%|███████▋ | 29/38 [00:03<00:01, 8.31it/s]\n 79%|███████▉ | 30/38 [00:03<00:00, 8.32it/s]\n 82%|████████▏ | 31/38 [00:03<00:00, 8.36it/s]\n 84%|████████▍ | 32/38 [00:03<00:00, 8.37it/s]\n 87%|████████▋ | 33/38 [00:03<00:00, 8.29it/s]\n 89%|████████▉ | 34/38 [00:04<00:00, 8.34it/s]\n 92%|█████████▏| 35/38 [00:04<00:00, 8.36it/s]\n 95%|█████████▍| 36/38 [00:04<00:00, 8.38it/s]\n 97%|█████████▋| 37/38 [00:04<00:00, 8.39it/s]\n100%|██████████| 38/38 [00:04<00:00, 8.36it/s]\n100%|██████████| 38/38 [00:04<00:00, 8.35it/s]",
"metrics": {
"predict_time": 6.287369,
"total_time": 6.400275
},
"output": [
"https://replicate.delivery/pbxt/OLlKnknFr7onAt10wTA8QpfVikRUIfwGg3fV5hrQulGqycnhA/out-0.png"
],
"started_at": "2023-04-20T12:47:11.489221Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/aup3l2wypzhzpo2kd2qf22bm54",
"cancel": "https://api.replicate.com/v1/predictions/aup3l2wypzhzpo2kd2qf22bm54/cancel"
},
"version": "f8e5074f993f6852679bdac9f604590827f11698fdbfc3f68a1f0c3395b46db6"
}
Using seed: 53686
Generating image of 768 x 768 with prompt: (((masterpiece))),(((bestquality))),((ultra-detailed)),(illustration),((anextremelydelicateandbeautiful)),dynamicangle,floating,(beautifuldetailedeyes),(detailedlight) (1girl), solo , floating_hair,glowingeyes,green hair,greeneyes <1>, twintails, halterdress,
The requested LoRAs are loaded.
The config attributes {'clip_sample_range': 1.0} were passed to EulerDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.
The config attributes {'clip_sample_range': 1.0} were passed to EulerAncestralDiscreteScheduler, but are not expected and will be ignored. Please verify your scheduler_config.json configuration file.
The following part of your input was truncated because CLIP can only handle sequences up to 77 tokens: ['twintails, halterdress,']
0%| | 0/38 [00:00<?, ?it/s]
3%|▎ | 1/38 [00:00<00:04, 8.40it/s]
5%|▌ | 2/38 [00:00<00:04, 8.36it/s]
8%|▊ | 3/38 [00:00<00:04, 8.34it/s]
11%|█ | 4/38 [00:00<00:04, 8.30it/s]
13%|█▎ | 5/38 [00:00<00:03, 8.33it/s]
16%|█▌ | 6/38 [00:00<00:03, 8.36it/s]
18%|█▊ | 7/38 [00:00<00:03, 8.37it/s]
21%|██ | 8/38 [00:00<00:03, 8.39it/s]
24%|██▎ | 9/38 [00:01<00:03, 8.40it/s]
26%|██▋ | 10/38 [00:01<00:03, 8.42it/s]
29%|██▉ | 11/38 [00:01<00:03, 8.40it/s]
32%|███▏ | 12/38 [00:01<00:03, 8.36it/s]
34%|███▍ | 13/38 [00:01<00:03, 8.33it/s]
37%|███▋ | 14/38 [00:01<00:02, 8.37it/s]
39%|███▉ | 15/38 [00:01<00:02, 8.38it/s]
42%|████▏ | 16/38 [00:01<00:02, 8.40it/s]
45%|████▍ | 17/38 [00:02<00:02, 8.40it/s]
47%|████▋ | 18/38 [00:02<00:02, 8.42it/s]
50%|█████ | 19/38 [00:02<00:02, 8.41it/s]
53%|█████▎ | 20/38 [00:02<00:02, 8.41it/s]
55%|█████▌ | 21/38 [00:02<00:02, 8.25it/s]
58%|█████▊ | 22/38 [00:02<00:01, 8.29it/s]
61%|██████ | 23/38 [00:02<00:01, 8.30it/s]
63%|██████▎ | 24/38 [00:02<00:01, 8.29it/s]
66%|██████▌ | 25/38 [00:02<00:01, 8.32it/s]
68%|██████▊ | 26/38 [00:03<00:01, 8.34it/s]
71%|███████ | 27/38 [00:03<00:01, 8.35it/s]
74%|███████▎ | 28/38 [00:03<00:01, 8.32it/s]
76%|███████▋ | 29/38 [00:03<00:01, 8.31it/s]
79%|███████▉ | 30/38 [00:03<00:00, 8.32it/s]
82%|████████▏ | 31/38 [00:03<00:00, 8.36it/s]
84%|████████▍ | 32/38 [00:03<00:00, 8.37it/s]
87%|████████▋ | 33/38 [00:03<00:00, 8.29it/s]
89%|████████▉ | 34/38 [00:04<00:00, 8.34it/s]
92%|█████████▏| 35/38 [00:04<00:00, 8.36it/s]
95%|█████████▍| 36/38 [00:04<00:00, 8.38it/s]
97%|█████████▋| 37/38 [00:04<00:00, 8.39it/s]
100%|██████████| 38/38 [00:04<00:00, 8.36it/s]
100%|██████████| 38/38 [00:04<00:00, 8.35it/s]