ali-vilab / anydoor
Anydoor: zero-shot object-level image customization
Prediction
ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2aIDkwb7f4tbbsbyuqo6vym44bewq4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- steps
- 50
- guidance_scale
- 4.5
- control_strength
- 1
- enable_shape_control
{ "steps": 50, "bg_mask_path": "https://replicate.delivery/pbxt/KAr3ayPx9LV5sJ66yNbNE6Ge1fg3KE8B7RU999MoMywBMsef/woman-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr3aFKWbmoWfqIZGqxNnMCtCh6LSqS4BnmsDx1sRrgmOI3N/woman.jpg", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": false, "reference_image_mask": "https://replicate.delivery/pbxt/KAr3avL7HCXeu0o4QxZyxg7qNXUsjxwoZqKKIBIuyvs6CyeF/blue-polo-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr3b5G84hHCXnwJNPOybjHP7oNUlXYOJUTUkBQVxc3D52zo/blue-polo.jpg" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/anydoor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a", { input: { steps: 50, bg_mask_path: "https://replicate.delivery/pbxt/KAr3ayPx9LV5sJ66yNbNE6Ge1fg3KE8B7RU999MoMywBMsef/woman-mask.png", bg_image_path: "https://replicate.delivery/pbxt/KAr3aFKWbmoWfqIZGqxNnMCtCh6LSqS4BnmsDx1sRrgmOI3N/woman.jpg", guidance_scale: 4.5, control_strength: 1, enable_shape_control: false, reference_image_mask: "https://replicate.delivery/pbxt/KAr3avL7HCXeu0o4QxZyxg7qNXUsjxwoZqKKIBIuyvs6CyeF/blue-polo-mask.png", reference_image_path: "https://replicate.delivery/pbxt/KAr3b5G84hHCXnwJNPOybjHP7oNUlXYOJUTUkBQVxc3D52zo/blue-polo.jpg" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/anydoor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a", input={ "steps": 50, "bg_mask_path": "https://replicate.delivery/pbxt/KAr3ayPx9LV5sJ66yNbNE6Ge1fg3KE8B7RU999MoMywBMsef/woman-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr3aFKWbmoWfqIZGqxNnMCtCh6LSqS4BnmsDx1sRrgmOI3N/woman.jpg", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": False, "reference_image_mask": "https://replicate.delivery/pbxt/KAr3avL7HCXeu0o4QxZyxg7qNXUsjxwoZqKKIBIuyvs6CyeF/blue-polo-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr3b5G84hHCXnwJNPOybjHP7oNUlXYOJUTUkBQVxc3D52zo/blue-polo.jpg" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/anydoor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a", "input": { "steps": 50, "bg_mask_path": "https://replicate.delivery/pbxt/KAr3ayPx9LV5sJ66yNbNE6Ge1fg3KE8B7RU999MoMywBMsef/woman-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr3aFKWbmoWfqIZGqxNnMCtCh6LSqS4BnmsDx1sRrgmOI3N/woman.jpg", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": false, "reference_image_mask": "https://replicate.delivery/pbxt/KAr3avL7HCXeu0o4QxZyxg7qNXUsjxwoZqKKIBIuyvs6CyeF/blue-polo-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr3b5G84hHCXnwJNPOybjHP7oNUlXYOJUTUkBQVxc3D52zo/blue-polo.jpg" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-05T16:13:06.110758Z", "created_at": "2024-01-05T16:11:31.836609Z", "data_removed": false, "error": null, "id": "kwb7f4tbbsbyuqo6vym44bewq4", "input": { "steps": 50, "bg_mask_path": "https://replicate.delivery/pbxt/KAr3ayPx9LV5sJ66yNbNE6Ge1fg3KE8B7RU999MoMywBMsef/woman-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr3aFKWbmoWfqIZGqxNnMCtCh6LSqS4BnmsDx1sRrgmOI3N/woman.jpg", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": false, "reference_image_mask": "https://replicate.delivery/pbxt/KAr3avL7HCXeu0o4QxZyxg7qNXUsjxwoZqKKIBIuyvs6CyeF/blue-polo-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr3b5G84hHCXnwJNPOybjHP7oNUlXYOJUTUkBQVxc3D52zo/blue-polo.jpg" }, "logs": "Using seed: 562681476\n/root/.pyenv/versions/3.8.5/lib/python3.8/site-packages/xformers/ops/unbind.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\nstorage_data_ptr = tensors[0].storage().data_ptr()\n/root/.pyenv/versions/3.8.5/lib/python3.8/site-packages/xformers/ops/unbind.py:48: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage()\nif x.storage().data_ptr() != storage_data_ptr:\nData shape for DDIM sampling is (1, 4, 64, 64), eta 0.0\nRunning DDIM Sampling with 50 timesteps\nDDIM Sampler: 0%| | 0/50 [00:00<?, ?it/s]\nDDIM Sampler: 2%|▏ | 1/50 [00:00<00:10, 4.55it/s]\nDDIM Sampler: 4%|▍ | 2/50 [00:00<00:08, 5.45it/s]\nDDIM Sampler: 6%|▌ | 3/50 [00:00<00:08, 5.82it/s]\nDDIM Sampler: 8%|▊ | 4/50 [00:00<00:07, 6.01it/s]\nDDIM Sampler: 10%|█ | 5/50 [00:00<00:07, 6.13it/s]\nDDIM Sampler: 12%|█▏ | 6/50 [00:01<00:07, 6.19it/s]\nDDIM Sampler: 14%|█▍ | 7/50 [00:01<00:06, 6.23it/s]\nDDIM Sampler: 16%|█▌ | 8/50 [00:01<00:06, 6.25it/s]\nDDIM Sampler: 18%|█▊ | 9/50 [00:01<00:06, 6.25it/s]\nDDIM Sampler: 20%|██ | 10/50 [00:01<00:06, 6.27it/s]\nDDIM Sampler: 22%|██▏ | 11/50 [00:01<00:06, 6.27it/s]\nDDIM Sampler: 24%|██▍ | 12/50 [00:01<00:06, 6.28it/s]\nDDIM Sampler: 26%|██▌ | 13/50 [00:02<00:05, 6.28it/s]\nDDIM Sampler: 28%|██▊ | 14/50 [00:02<00:05, 6.29it/s]\nDDIM Sampler: 30%|███ | 15/50 [00:02<00:05, 6.29it/s]\nDDIM Sampler: 32%|███▏ | 16/50 [00:02<00:05, 6.29it/s]\nDDIM Sampler: 34%|███▍ | 17/50 [00:02<00:05, 6.28it/s]\nDDIM Sampler: 36%|███▌ | 18/50 [00:02<00:05, 6.28it/s]\nDDIM Sampler: 38%|███▊ | 19/50 [00:03<00:04, 6.29it/s]\nDDIM Sampler: 40%|████ | 20/50 [00:03<00:04, 6.30it/s]\nDDIM Sampler: 42%|████▏ | 21/50 [00:03<00:04, 6.30it/s]\nDDIM Sampler: 44%|████▍ | 22/50 [00:03<00:04, 6.30it/s]\nDDIM Sampler: 46%|████▌ | 23/50 [00:03<00:04, 6.30it/s]\nDDIM Sampler: 48%|████▊ | 24/50 [00:03<00:04, 6.30it/s]\nDDIM Sampler: 50%|█████ | 25/50 [00:04<00:03, 6.30it/s]\nDDIM Sampler: 52%|█████▏ | 26/50 [00:04<00:03, 6.30it/s]\nDDIM Sampler: 54%|█████▍ | 27/50 [00:04<00:03, 6.30it/s]\nDDIM Sampler: 56%|█████▌ | 28/50 [00:04<00:03, 6.29it/s]\nDDIM Sampler: 58%|█████▊ | 29/50 [00:04<00:03, 6.28it/s]\nDDIM Sampler: 60%|██████ | 30/50 [00:04<00:03, 6.28it/s]\nDDIM Sampler: 62%|██████▏ | 31/50 [00:04<00:03, 6.29it/s]\nDDIM Sampler: 64%|██████▍ | 32/50 [00:05<00:02, 6.30it/s]\nDDIM Sampler: 66%|██████▌ | 33/50 [00:05<00:02, 6.31it/s]\nDDIM Sampler: 68%|██████▊ | 34/50 [00:05<00:02, 6.32it/s]\nDDIM Sampler: 70%|███████ | 35/50 [00:05<00:02, 6.32it/s]\nDDIM Sampler: 72%|███████▏ | 36/50 [00:05<00:02, 6.33it/s]\nDDIM Sampler: 74%|███████▍ | 37/50 [00:05<00:02, 6.33it/s]\nDDIM Sampler: 76%|███████▌ | 38/50 [00:06<00:01, 6.33it/s]\nDDIM Sampler: 78%|███████▊ | 39/50 [00:06<00:01, 6.33it/s]\nDDIM Sampler: 80%|████████ | 40/50 [00:06<00:01, 6.32it/s]\nDDIM Sampler: 82%|████████▏ | 41/50 [00:06<00:01, 6.32it/s]\nDDIM Sampler: 84%|████████▍ | 42/50 [00:06<00:01, 6.32it/s]\nDDIM Sampler: 86%|████████▌ | 43/50 [00:06<00:01, 6.32it/s]\nDDIM Sampler: 88%|████████▊ | 44/50 [00:07<00:00, 6.33it/s]\nDDIM Sampler: 90%|█████████ | 45/50 [00:07<00:00, 6.34it/s]\nDDIM Sampler: 92%|█████████▏| 46/50 [00:07<00:00, 6.35it/s]\nDDIM Sampler: 94%|█████████▍| 47/50 [00:07<00:00, 6.34it/s]\nDDIM Sampler: 96%|█████████▌| 48/50 [00:07<00:00, 6.33it/s]\nDDIM Sampler: 98%|█████████▊| 49/50 [00:07<00:00, 6.33it/s]\nDDIM Sampler: 100%|██████████| 50/50 [00:07<00:00, 6.33it/s]\nDDIM Sampler: 100%|██████████| 50/50 [00:07<00:00, 6.26it/s]", "metrics": { "predict_time": 11.687846, "total_time": 94.274149 }, "output": "https://replicate.delivery/pbxt/jStRPc3ffzieUJFUiqePbecnQuCr87izGYTtaEULnQjMSuLRC/output.png", "started_at": "2024-01-05T16:12:54.422912Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/kwb7f4tbbsbyuqo6vym44bewq4", "cancel": "https://api.replicate.com/v1/predictions/kwb7f4tbbsbyuqo6vym44bewq4/cancel" }, "version": "542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a" }
Generated inUsing seed: 562681476 /root/.pyenv/versions/3.8.5/lib/python3.8/site-packages/xformers/ops/unbind.py:46: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() storage_data_ptr = tensors[0].storage().data_ptr() /root/.pyenv/versions/3.8.5/lib/python3.8/site-packages/xformers/ops/unbind.py:48: UserWarning: TypedStorage is deprecated. It will be removed in the future and UntypedStorage will be the only storage class. This should only matter to you if you are using storages directly. To access UntypedStorage directly, use tensor.untyped_storage() instead of tensor.storage() if x.storage().data_ptr() != storage_data_ptr: Data shape for DDIM sampling is (1, 4, 64, 64), eta 0.0 Running DDIM Sampling with 50 timesteps DDIM Sampler: 0%| | 0/50 [00:00<?, ?it/s] DDIM Sampler: 2%|▏ | 1/50 [00:00<00:10, 4.55it/s] DDIM Sampler: 4%|▍ | 2/50 [00:00<00:08, 5.45it/s] DDIM Sampler: 6%|▌ | 3/50 [00:00<00:08, 5.82it/s] DDIM Sampler: 8%|▊ | 4/50 [00:00<00:07, 6.01it/s] DDIM Sampler: 10%|█ | 5/50 [00:00<00:07, 6.13it/s] DDIM Sampler: 12%|█▏ | 6/50 [00:01<00:07, 6.19it/s] DDIM Sampler: 14%|█▍ | 7/50 [00:01<00:06, 6.23it/s] DDIM Sampler: 16%|█▌ | 8/50 [00:01<00:06, 6.25it/s] DDIM Sampler: 18%|█▊ | 9/50 [00:01<00:06, 6.25it/s] DDIM Sampler: 20%|██ | 10/50 [00:01<00:06, 6.27it/s] DDIM Sampler: 22%|██▏ | 11/50 [00:01<00:06, 6.27it/s] DDIM Sampler: 24%|██▍ | 12/50 [00:01<00:06, 6.28it/s] DDIM Sampler: 26%|██▌ | 13/50 [00:02<00:05, 6.28it/s] DDIM Sampler: 28%|██▊ | 14/50 [00:02<00:05, 6.29it/s] DDIM Sampler: 30%|███ | 15/50 [00:02<00:05, 6.29it/s] DDIM Sampler: 32%|███▏ | 16/50 [00:02<00:05, 6.29it/s] DDIM Sampler: 34%|███▍ | 17/50 [00:02<00:05, 6.28it/s] DDIM Sampler: 36%|███▌ | 18/50 [00:02<00:05, 6.28it/s] DDIM Sampler: 38%|███▊ | 19/50 [00:03<00:04, 6.29it/s] DDIM Sampler: 40%|████ | 20/50 [00:03<00:04, 6.30it/s] DDIM Sampler: 42%|████▏ | 21/50 [00:03<00:04, 6.30it/s] DDIM Sampler: 44%|████▍ | 22/50 [00:03<00:04, 6.30it/s] DDIM Sampler: 46%|████▌ | 23/50 [00:03<00:04, 6.30it/s] DDIM Sampler: 48%|████▊ | 24/50 [00:03<00:04, 6.30it/s] DDIM Sampler: 50%|█████ | 25/50 [00:04<00:03, 6.30it/s] DDIM Sampler: 52%|█████▏ | 26/50 [00:04<00:03, 6.30it/s] DDIM Sampler: 54%|█████▍ | 27/50 [00:04<00:03, 6.30it/s] DDIM Sampler: 56%|█████▌ | 28/50 [00:04<00:03, 6.29it/s] DDIM Sampler: 58%|█████▊ | 29/50 [00:04<00:03, 6.28it/s] DDIM Sampler: 60%|██████ | 30/50 [00:04<00:03, 6.28it/s] DDIM Sampler: 62%|██████▏ | 31/50 [00:04<00:03, 6.29it/s] DDIM Sampler: 64%|██████▍ | 32/50 [00:05<00:02, 6.30it/s] DDIM Sampler: 66%|██████▌ | 33/50 [00:05<00:02, 6.31it/s] DDIM Sampler: 68%|██████▊ | 34/50 [00:05<00:02, 6.32it/s] DDIM Sampler: 70%|███████ | 35/50 [00:05<00:02, 6.32it/s] DDIM Sampler: 72%|███████▏ | 36/50 [00:05<00:02, 6.33it/s] DDIM Sampler: 74%|███████▍ | 37/50 [00:05<00:02, 6.33it/s] DDIM Sampler: 76%|███████▌ | 38/50 [00:06<00:01, 6.33it/s] DDIM Sampler: 78%|███████▊ | 39/50 [00:06<00:01, 6.33it/s] DDIM Sampler: 80%|████████ | 40/50 [00:06<00:01, 6.32it/s] DDIM Sampler: 82%|████████▏ | 41/50 [00:06<00:01, 6.32it/s] DDIM Sampler: 84%|████████▍ | 42/50 [00:06<00:01, 6.32it/s] DDIM Sampler: 86%|████████▌ | 43/50 [00:06<00:01, 6.32it/s] DDIM Sampler: 88%|████████▊ | 44/50 [00:07<00:00, 6.33it/s] DDIM Sampler: 90%|█████████ | 45/50 [00:07<00:00, 6.34it/s] DDIM Sampler: 92%|█████████▏| 46/50 [00:07<00:00, 6.35it/s] DDIM Sampler: 94%|█████████▍| 47/50 [00:07<00:00, 6.34it/s] DDIM Sampler: 96%|█████████▌| 48/50 [00:07<00:00, 6.33it/s] DDIM Sampler: 98%|█████████▊| 49/50 [00:07<00:00, 6.33it/s] DDIM Sampler: 100%|██████████| 50/50 [00:07<00:00, 6.33it/s] DDIM Sampler: 100%|██████████| 50/50 [00:07<00:00, 6.26it/s]
Prediction
ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2aIDvtxdxidb4u2u64w7ffou7tdvgyStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- steps
- 30
- guidance_scale
- 4.5
- control_strength
- 1
- enable_shape_control
{ "steps": 30, "bg_mask_path": "https://replicate.delivery/pbxt/KAr5sZjqxgOrXGCOo2PAkvrywmnD8s6gtGYEKAzxV1n8UsKN/burger-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr5t2fIFVQ4eNy4JwN6LAZpHyTYzXHaO78TinDeHzYWK9RS/burger.png", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": false, "reference_image_mask": "https://replicate.delivery/pbxt/KAr5swy9Bdkv4cM2IKAvLoxCMWtLLmMLFSK1SpwTLDxzdYgW/sloth-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr5sJGlXZyZPR2SfOduHMvnUgS1CIc81ynRVCdHV24JdTo0/sloth.png" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ali-vilab/anydoor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a", { input: { steps: 30, bg_mask_path: "https://replicate.delivery/pbxt/KAr5sZjqxgOrXGCOo2PAkvrywmnD8s6gtGYEKAzxV1n8UsKN/burger-mask.png", bg_image_path: "https://replicate.delivery/pbxt/KAr5t2fIFVQ4eNy4JwN6LAZpHyTYzXHaO78TinDeHzYWK9RS/burger.png", guidance_scale: 4.5, control_strength: 1, enable_shape_control: false, reference_image_mask: "https://replicate.delivery/pbxt/KAr5swy9Bdkv4cM2IKAvLoxCMWtLLmMLFSK1SpwTLDxzdYgW/sloth-mask.png", reference_image_path: "https://replicate.delivery/pbxt/KAr5sJGlXZyZPR2SfOduHMvnUgS1CIc81ynRVCdHV24JdTo0/sloth.png" } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ali-vilab/anydoor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a", input={ "steps": 30, "bg_mask_path": "https://replicate.delivery/pbxt/KAr5sZjqxgOrXGCOo2PAkvrywmnD8s6gtGYEKAzxV1n8UsKN/burger-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr5t2fIFVQ4eNy4JwN6LAZpHyTYzXHaO78TinDeHzYWK9RS/burger.png", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": False, "reference_image_mask": "https://replicate.delivery/pbxt/KAr5swy9Bdkv4cM2IKAvLoxCMWtLLmMLFSK1SpwTLDxzdYgW/sloth-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr5sJGlXZyZPR2SfOduHMvnUgS1CIc81ynRVCdHV24JdTo0/sloth.png" } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run ali-vilab/anydoor using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ali-vilab/anydoor:542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a", "input": { "steps": 30, "bg_mask_path": "https://replicate.delivery/pbxt/KAr5sZjqxgOrXGCOo2PAkvrywmnD8s6gtGYEKAzxV1n8UsKN/burger-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr5t2fIFVQ4eNy4JwN6LAZpHyTYzXHaO78TinDeHzYWK9RS/burger.png", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": false, "reference_image_mask": "https://replicate.delivery/pbxt/KAr5swy9Bdkv4cM2IKAvLoxCMWtLLmMLFSK1SpwTLDxzdYgW/sloth-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr5sJGlXZyZPR2SfOduHMvnUgS1CIc81ynRVCdHV24JdTo0/sloth.png" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-05T16:14:05.078761Z", "created_at": "2024-01-05T16:13:57.255429Z", "data_removed": false, "error": null, "id": "vtxdxidb4u2u64w7ffou7tdvgy", "input": { "steps": 30, "bg_mask_path": "https://replicate.delivery/pbxt/KAr5sZjqxgOrXGCOo2PAkvrywmnD8s6gtGYEKAzxV1n8UsKN/burger-mask.png", "bg_image_path": "https://replicate.delivery/pbxt/KAr5t2fIFVQ4eNy4JwN6LAZpHyTYzXHaO78TinDeHzYWK9RS/burger.png", "guidance_scale": 4.5, "control_strength": 1, "enable_shape_control": false, "reference_image_mask": "https://replicate.delivery/pbxt/KAr5swy9Bdkv4cM2IKAvLoxCMWtLLmMLFSK1SpwTLDxzdYgW/sloth-mask.png", "reference_image_path": "https://replicate.delivery/pbxt/KAr5sJGlXZyZPR2SfOduHMvnUgS1CIc81ynRVCdHV24JdTo0/sloth.png" }, "logs": "Using seed: 2627894035\nData shape for DDIM sampling is (1, 4, 64, 64), eta 0.0\nRunning DDIM Sampling with 31 timesteps\nDDIM Sampler: 0%| | 0/31 [00:00<?, ?it/s]\nDDIM Sampler: 3%|▎ | 1/31 [00:00<00:04, 6.18it/s]\nDDIM Sampler: 6%|▋ | 2/31 [00:00<00:04, 6.25it/s]\nDDIM Sampler: 10%|▉ | 3/31 [00:00<00:04, 6.28it/s]\nDDIM Sampler: 13%|█▎ | 4/31 [00:00<00:04, 6.29it/s]\nDDIM Sampler: 16%|█▌ | 5/31 [00:00<00:04, 6.29it/s]\nDDIM Sampler: 19%|█▉ | 6/31 [00:00<00:03, 6.28it/s]\nDDIM Sampler: 23%|██▎ | 7/31 [00:01<00:03, 6.28it/s]\nDDIM Sampler: 26%|██▌ | 8/31 [00:01<00:03, 6.28it/s]\nDDIM Sampler: 29%|██▉ | 9/31 [00:01<00:03, 6.28it/s]\nDDIM Sampler: 32%|███▏ | 10/31 [00:01<00:03, 6.27it/s]\nDDIM Sampler: 35%|███▌ | 11/31 [00:01<00:03, 6.27it/s]\nDDIM Sampler: 39%|███▊ | 12/31 [00:01<00:03, 6.28it/s]\nDDIM Sampler: 42%|████▏ | 13/31 [00:02<00:02, 6.28it/s]\nDDIM Sampler: 45%|████▌ | 14/31 [00:02<00:02, 6.29it/s]\nDDIM Sampler: 48%|████▊ | 15/31 [00:02<00:02, 6.31it/s]\nDDIM Sampler: 52%|█████▏ | 16/31 [00:02<00:02, 6.32it/s]\nDDIM Sampler: 55%|█████▍ | 17/31 [00:02<00:02, 6.33it/s]\nDDIM Sampler: 58%|█████▊ | 18/31 [00:02<00:02, 6.33it/s]\nDDIM Sampler: 61%|██████▏ | 19/31 [00:03<00:01, 6.33it/s]\nDDIM Sampler: 65%|██████▍ | 20/31 [00:03<00:01, 6.33it/s]\nDDIM Sampler: 68%|██████▊ | 21/31 [00:03<00:01, 6.33it/s]\nDDIM Sampler: 71%|███████ | 22/31 [00:03<00:01, 6.33it/s]\nDDIM Sampler: 74%|███████▍ | 23/31 [00:03<00:01, 6.33it/s]\nDDIM Sampler: 77%|███████▋ | 24/31 [00:03<00:01, 6.33it/s]\nDDIM Sampler: 81%|████████ | 25/31 [00:03<00:00, 6.33it/s]\nDDIM Sampler: 84%|████████▍ | 26/31 [00:04<00:00, 6.33it/s]\nDDIM Sampler: 87%|████████▋ | 27/31 [00:04<00:00, 6.33it/s]\nDDIM Sampler: 90%|█████████ | 28/31 [00:04<00:00, 6.33it/s]\nDDIM Sampler: 94%|█████████▎| 29/31 [00:04<00:00, 6.33it/s]\nDDIM Sampler: 97%|█████████▋| 30/31 [00:04<00:00, 6.32it/s]\nDDIM Sampler: 100%|██████████| 31/31 [00:04<00:00, 6.32it/s]\nDDIM Sampler: 100%|██████████| 31/31 [00:04<00:00, 6.31it/s]", "metrics": { "predict_time": 7.787525, "total_time": 7.823332 }, "output": "https://replicate.delivery/pbxt/1yuh0r2VbN6mK50eijySUVLRGrFqtvpBb6ICrVSdcBam5uEJA/output.png", "started_at": "2024-01-05T16:13:57.291236Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vtxdxidb4u2u64w7ffou7tdvgy", "cancel": "https://api.replicate.com/v1/predictions/vtxdxidb4u2u64w7ffou7tdvgy/cancel" }, "version": "542c963129c4661ab53a875b1b9a84b2102ca784cf872ef2752a468721c0eb2a" }
Generated inUsing seed: 2627894035 Data shape for DDIM sampling is (1, 4, 64, 64), eta 0.0 Running DDIM Sampling with 31 timesteps DDIM Sampler: 0%| | 0/31 [00:00<?, ?it/s] DDIM Sampler: 3%|▎ | 1/31 [00:00<00:04, 6.18it/s] DDIM Sampler: 6%|▋ | 2/31 [00:00<00:04, 6.25it/s] DDIM Sampler: 10%|▉ | 3/31 [00:00<00:04, 6.28it/s] DDIM Sampler: 13%|█▎ | 4/31 [00:00<00:04, 6.29it/s] DDIM Sampler: 16%|█▌ | 5/31 [00:00<00:04, 6.29it/s] DDIM Sampler: 19%|█▉ | 6/31 [00:00<00:03, 6.28it/s] DDIM Sampler: 23%|██▎ | 7/31 [00:01<00:03, 6.28it/s] DDIM Sampler: 26%|██▌ | 8/31 [00:01<00:03, 6.28it/s] DDIM Sampler: 29%|██▉ | 9/31 [00:01<00:03, 6.28it/s] DDIM Sampler: 32%|███▏ | 10/31 [00:01<00:03, 6.27it/s] DDIM Sampler: 35%|███▌ | 11/31 [00:01<00:03, 6.27it/s] DDIM Sampler: 39%|███▊ | 12/31 [00:01<00:03, 6.28it/s] DDIM Sampler: 42%|████▏ | 13/31 [00:02<00:02, 6.28it/s] DDIM Sampler: 45%|████▌ | 14/31 [00:02<00:02, 6.29it/s] DDIM Sampler: 48%|████▊ | 15/31 [00:02<00:02, 6.31it/s] DDIM Sampler: 52%|█████▏ | 16/31 [00:02<00:02, 6.32it/s] DDIM Sampler: 55%|█████▍ | 17/31 [00:02<00:02, 6.33it/s] DDIM Sampler: 58%|█████▊ | 18/31 [00:02<00:02, 6.33it/s] DDIM Sampler: 61%|██████▏ | 19/31 [00:03<00:01, 6.33it/s] DDIM Sampler: 65%|██████▍ | 20/31 [00:03<00:01, 6.33it/s] DDIM Sampler: 68%|██████▊ | 21/31 [00:03<00:01, 6.33it/s] DDIM Sampler: 71%|███████ | 22/31 [00:03<00:01, 6.33it/s] DDIM Sampler: 74%|███████▍ | 23/31 [00:03<00:01, 6.33it/s] DDIM Sampler: 77%|███████▋ | 24/31 [00:03<00:01, 6.33it/s] DDIM Sampler: 81%|████████ | 25/31 [00:03<00:00, 6.33it/s] DDIM Sampler: 84%|████████▍ | 26/31 [00:04<00:00, 6.33it/s] DDIM Sampler: 87%|████████▋ | 27/31 [00:04<00:00, 6.33it/s] DDIM Sampler: 90%|█████████ | 28/31 [00:04<00:00, 6.33it/s] DDIM Sampler: 94%|█████████▎| 29/31 [00:04<00:00, 6.33it/s] DDIM Sampler: 97%|█████████▋| 30/31 [00:04<00:00, 6.32it/s] DDIM Sampler: 100%|██████████| 31/31 [00:04<00:00, 6.32it/s] DDIM Sampler: 100%|██████████| 31/31 [00:04<00:00, 6.31it/s]
Want to make some of these yourself?
Run this model