csslc / ccsr
Improving the Stability of Diffusion Models for Content Consistent Super-Resolution
Prediction
csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947ModelIDdpcxmxtbzg4lmduurxuupffsrmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- steps
- 45
- t_max
- 0.6667
- t_min
- 0.3333
- sr_scale
- 4
- tile_vae
- color_fix_type
- adain
- tile_diffusion
- tile_diffusion_size
- 512
- tile_diffusion_stride
- 256
- vae_decoder_tile_size
- 224
- vae_encoder_tile_size
- 1024
{ "image": "https://replicate.delivery/pbxt/KEsAFaE2ccvOWnpi4UvCuw9E55jW366PDRhiTLC32rmNbZbw/49.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", { input: { image: "https://replicate.delivery/pbxt/KEsAFaE2ccvOWnpi4UvCuw9E55jW366PDRhiTLC32rmNbZbw/49.jpg", steps: 45, t_max: 0.6667, t_min: 0.3333, sr_scale: 4, tile_vae: false, color_fix_type: "adain", tile_diffusion: false, tile_diffusion_size: 512, tile_diffusion_stride: 256, vae_decoder_tile_size: 224, vae_encoder_tile_size: 1024 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", input={ "image": "https://replicate.delivery/pbxt/KEsAFaE2ccvOWnpi4UvCuw9E55jW366PDRhiTLC32rmNbZbw/49.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": False, "color_fix_type": "adain", "tile_diffusion": False, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", "input": { "image": "https://replicate.delivery/pbxt/KEsAFaE2ccvOWnpi4UvCuw9E55jW366PDRhiTLC32rmNbZbw/49.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-16T23:53:28.544718Z", "created_at": "2024-01-16T23:51:20.863191Z", "data_removed": false, "error": null, "id": "dpcxmxtbzg4lmduurxuupffsrm", "input": { "image": "https://replicate.delivery/pbxt/KEsAFaE2ccvOWnpi4UvCuw9E55jW366PDRhiTLC32rmNbZbw/49.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 }, "logs": "ControlLDM: Running in eps-prediction mode\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nDiffusionWrapper has 865.91 M params.\nmaking attention of type 'vanilla-xformers' with 512 in_channels\nbuilding MemoryEfficientAttnBlock with 512 in_channels...\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla-xformers' with 512 in_channels\nbuilding MemoryEfficientAttnBlock with 512 in_channels...\nopen_clip_pytorch_model.bin: 0%| | 0.00/3.94G [00:00<?, ?B/s]\nopen_clip_pytorch_model.bin: 0%| | 10.5M/3.94G [00:00<03:05, 21.2MB/s]\nopen_clip_pytorch_model.bin: 1%| | 41.9M/3.94G [00:00<00:49, 78.1MB/s]\nopen_clip_pytorch_model.bin: 2%|▏ | 73.4M/3.94G [00:00<00:32, 120MB/s] \nopen_clip_pytorch_model.bin: 3%|▎ | 105M/3.94G [00:00<00:25, 152MB/s] \nopen_clip_pytorch_model.bin: 3%|▎ | 136M/3.94G [00:01<00:21, 181MB/s]\nopen_clip_pytorch_model.bin: 4%|▍ | 168M/3.94G [00:01<00:19, 196MB/s]\nopen_clip_pytorch_model.bin: 5%|▌ | 199M/3.94G [00:01<00:18, 206MB/s]\nopen_clip_pytorch_model.bin: 6%|▌ | 231M/3.94G [00:01<00:17, 214MB/s]\nopen_clip_pytorch_model.bin: 7%|▋ | 262M/3.94G [00:01<00:16, 221MB/s]\nopen_clip_pytorch_model.bin: 7%|▋ | 294M/3.94G [00:01<00:16, 224MB/s]\nopen_clip_pytorch_model.bin: 8%|▊ | 325M/3.94G [00:01<00:16, 225MB/s]\nopen_clip_pytorch_model.bin: 9%|▉ | 357M/3.94G [00:01<00:15, 226MB/s]\nopen_clip_pytorch_model.bin: 10%|▉ | 388M/3.94G [00:02<00:15, 224MB/s]\nopen_clip_pytorch_model.bin: 11%|█ | 419M/3.94G [00:02<00:15, 225MB/s]\nopen_clip_pytorch_model.bin: 11%|█▏ | 451M/3.94G [00:02<00:15, 223MB/s]\nopen_clip_pytorch_model.bin: 12%|█▏ | 482M/3.94G [00:02<00:15, 224MB/s]\nopen_clip_pytorch_model.bin: 13%|█▎ | 514M/3.94G [00:02<00:15, 222MB/s]\nopen_clip_pytorch_model.bin: 14%|█▍ | 545M/3.94G [00:02<00:15, 222MB/s]\nopen_clip_pytorch_model.bin: 15%|█▍ | 577M/3.94G [00:02<00:15, 225MB/s]\nopen_clip_pytorch_model.bin: 15%|█▌ | 608M/3.94G [00:03<00:14, 228MB/s]\nopen_clip_pytorch_model.bin: 16%|█▌ | 640M/3.94G [00:03<00:13, 245MB/s]\nopen_clip_pytorch_model.bin: 17%|█▋ | 671M/3.94G [00:03<00:14, 232MB/s]\nopen_clip_pytorch_model.bin: 18%|█▊ | 703M/3.94G [00:03<00:15, 216MB/s]\nopen_clip_pytorch_model.bin: 19%|█▊ | 734M/3.94G [00:03<00:15, 211MB/s]\nopen_clip_pytorch_model.bin: 19%|█▉ | 765M/3.94G [00:03<00:14, 214MB/s]\nopen_clip_pytorch_model.bin: 20%|██ | 807M/3.94G [00:03<00:13, 231MB/s]\nopen_clip_pytorch_model.bin: 21%|██▏ | 839M/3.94G [00:04<00:13, 231MB/s]\nopen_clip_pytorch_model.bin: 22%|██▏ | 870M/3.94G [00:04<00:13, 229MB/s]\nopen_clip_pytorch_model.bin: 23%|██▎ | 902M/3.94G [00:04<00:13, 226MB/s]\nopen_clip_pytorch_model.bin: 24%|██▎ | 933M/3.94G [00:04<00:13, 219MB/s]\nopen_clip_pytorch_model.bin: 24%|██▍ | 965M/3.94G [00:04<00:13, 223MB/s]\nopen_clip_pytorch_model.bin: 25%|██▌ | 996M/3.94G [00:04<00:13, 225MB/s]\nopen_clip_pytorch_model.bin: 26%|██▌ | 1.03G/3.94G [00:04<00:12, 225MB/s]\nopen_clip_pytorch_model.bin: 27%|██▋ | 1.06G/3.94G [00:05<00:13, 217MB/s]\nopen_clip_pytorch_model.bin: 28%|██▊ | 1.09G/3.94G [00:05<00:12, 222MB/s]\nopen_clip_pytorch_model.bin: 28%|██▊ | 1.12G/3.94G [00:05<00:12, 223MB/s]\nopen_clip_pytorch_model.bin: 29%|██▉ | 1.15G/3.94G [00:05<00:12, 223MB/s]\nopen_clip_pytorch_model.bin: 30%|███ | 1.18G/3.94G [00:05<00:12, 224MB/s]\nopen_clip_pytorch_model.bin: 31%|███ | 1.22G/3.94G [00:05<00:12, 222MB/s]\nopen_clip_pytorch_model.bin: 32%|███▏ | 1.25G/3.94G [00:05<00:12, 224MB/s]\nopen_clip_pytorch_model.bin: 32%|███▏ | 1.28G/3.94G [00:06<00:11, 223MB/s]\nopen_clip_pytorch_model.bin: 33%|███▎ | 1.31G/3.94G [00:06<00:11, 224MB/s]\nopen_clip_pytorch_model.bin: 34%|███▍ | 1.34G/3.94G [00:06<00:11, 228MB/s]\nopen_clip_pytorch_model.bin: 35%|███▍ | 1.37G/3.94G [00:06<00:11, 229MB/s]\nopen_clip_pytorch_model.bin: 36%|███▌ | 1.41G/3.94G [00:06<00:11, 225MB/s]\nopen_clip_pytorch_model.bin: 36%|███▋ | 1.44G/3.94G [00:06<00:11, 225MB/s]\nopen_clip_pytorch_model.bin: 37%|███▋ | 1.47G/3.94G [00:06<00:10, 226MB/s]\nopen_clip_pytorch_model.bin: 38%|███▊ | 1.50G/3.94G [00:07<00:10, 222MB/s]\nopen_clip_pytorch_model.bin: 39%|███▉ | 1.53G/3.94G [00:07<00:10, 223MB/s]\nopen_clip_pytorch_model.bin: 40%|███▉ | 1.56G/3.94G [00:07<00:10, 221MB/s]\nopen_clip_pytorch_model.bin: 40%|████ | 1.59G/3.94G [00:07<00:10, 219MB/s]\nopen_clip_pytorch_model.bin: 41%|████ | 1.63G/3.94G [00:07<00:10, 222MB/s]\nopen_clip_pytorch_model.bin: 42%|████▏ | 1.66G/3.94G [00:07<00:10, 221MB/s]\nopen_clip_pytorch_model.bin: 43%|████▎ | 1.69G/3.94G [00:07<00:10, 223MB/s]\nopen_clip_pytorch_model.bin: 44%|████▎ | 1.72G/3.94G [00:08<00:09, 227MB/s]\nopen_clip_pytorch_model.bin: 44%|████▍ | 1.75G/3.94G [00:08<00:09, 226MB/s]\nopen_clip_pytorch_model.bin: 45%|████▌ | 1.78G/3.94G [00:08<00:09, 224MB/s]\nopen_clip_pytorch_model.bin: 46%|████▌ | 1.81G/3.94G [00:08<00:09, 225MB/s]\nopen_clip_pytorch_model.bin: 47%|████▋ | 1.85G/3.94G [00:08<00:09, 227MB/s]\nopen_clip_pytorch_model.bin: 48%|████▊ | 1.88G/3.94G [00:08<00:09, 226MB/s]\nopen_clip_pytorch_model.bin: 48%|████▊ | 1.91G/3.94G [00:08<00:09, 225MB/s]\nopen_clip_pytorch_model.bin: 49%|████▉ | 1.94G/3.94G [00:09<00:08, 226MB/s]\nopen_clip_pytorch_model.bin: 50%|████▉ | 1.97G/3.94G [00:09<00:08, 226MB/s]\nopen_clip_pytorch_model.bin: 51%|█████ | 2.00G/3.94G [00:09<00:08, 226MB/s]\nopen_clip_pytorch_model.bin: 52%|█████▏ | 2.03G/3.94G [00:09<00:08, 228MB/s]\nopen_clip_pytorch_model.bin: 52%|█████▏ | 2.07G/3.94G [00:09<00:08, 228MB/s]\nopen_clip_pytorch_model.bin: 53%|█████▎ | 2.10G/3.94G [00:09<00:08, 228MB/s]\nopen_clip_pytorch_model.bin: 54%|█████▍ | 2.13G/3.94G [00:09<00:07, 228MB/s]\nopen_clip_pytorch_model.bin: 55%|█████▍ | 2.16G/3.94G [00:10<00:07, 230MB/s]\nopen_clip_pytorch_model.bin: 56%|█████▌ | 2.19G/3.94G [00:10<00:07, 226MB/s]\nopen_clip_pytorch_model.bin: 56%|█████▋ | 2.22G/3.94G [00:10<00:07, 230MB/s]\nopen_clip_pytorch_model.bin: 57%|█████▋ | 2.25G/3.94G [00:10<00:07, 228MB/s]\nopen_clip_pytorch_model.bin: 58%|█████▊ | 2.29G/3.94G [00:10<00:07, 228MB/s]\nopen_clip_pytorch_model.bin: 59%|█████▊ | 2.32G/3.94G [00:10<00:07, 227MB/s]\nopen_clip_pytorch_model.bin: 60%|█████▉ | 2.35G/3.94G [00:10<00:06, 230MB/s]\nopen_clip_pytorch_model.bin: 60%|██████ | 2.38G/3.94G [00:10<00:06, 229MB/s]\nopen_clip_pytorch_model.bin: 61%|██████ | 2.41G/3.94G [00:11<00:06, 228MB/s]\nopen_clip_pytorch_model.bin: 62%|██████▏ | 2.44G/3.94G [00:11<00:06, 227MB/s]\nopen_clip_pytorch_model.bin: 63%|██████▎ | 2.47G/3.94G [00:11<00:06, 228MB/s]\nopen_clip_pytorch_model.bin: 64%|██████▎ | 2.51G/3.94G [00:11<00:06, 224MB/s]\nopen_clip_pytorch_model.bin: 64%|██████▍ | 2.54G/3.94G [00:11<00:06, 227MB/s]\nopen_clip_pytorch_model.bin: 65%|██████▌ | 2.57G/3.94G [00:11<00:06, 228MB/s]\nopen_clip_pytorch_model.bin: 66%|██████▌ | 2.60G/3.94G [00:11<00:05, 231MB/s]\nopen_clip_pytorch_model.bin: 67%|██████▋ | 2.63G/3.94G [00:12<00:05, 227MB/s]\nopen_clip_pytorch_model.bin: 68%|██████▊ | 2.66G/3.94G [00:12<00:08, 148MB/s]\nopen_clip_pytorch_model.bin: 68%|██████▊ | 2.69G/3.94G [00:12<00:07, 166MB/s]\nopen_clip_pytorch_model.bin: 69%|██████▉ | 2.73G/3.94G [00:12<00:06, 182MB/s]\nopen_clip_pytorch_model.bin: 70%|██████▉ | 2.76G/3.94G [00:12<00:06, 194MB/s]\nopen_clip_pytorch_model.bin: 71%|███████ | 2.79G/3.94G [00:13<00:05, 201MB/s]\nopen_clip_pytorch_model.bin: 72%|███████▏ | 2.82G/3.94G [00:13<00:05, 210MB/s]\nopen_clip_pytorch_model.bin: 72%|███████▏ | 2.85G/3.94G [00:13<00:05, 216MB/s]\nopen_clip_pytorch_model.bin: 73%|███████▎ | 2.89G/3.94G [00:13<00:04, 233MB/s]\nopen_clip_pytorch_model.bin: 74%|███████▍ | 2.93G/3.94G [00:13<00:04, 229MB/s]\nopen_clip_pytorch_model.bin: 75%|███████▍ | 2.96G/3.94G [00:13<00:04, 230MB/s]\nopen_clip_pytorch_model.bin: 76%|███████▌ | 2.99G/3.94G [00:13<00:04, 233MB/s]\nopen_clip_pytorch_model.bin: 77%|███████▋ | 3.02G/3.94G [00:13<00:03, 235MB/s]\nopen_clip_pytorch_model.bin: 77%|███████▋ | 3.05G/3.94G [00:14<00:03, 233MB/s]\nopen_clip_pytorch_model.bin: 78%|███████▊ | 3.08G/3.94G [00:14<00:03, 232MB/s]\nopen_clip_pytorch_model.bin: 79%|███████▉ | 3.11G/3.94G [00:14<00:03, 230MB/s]\nopen_clip_pytorch_model.bin: 80%|███████▉ | 3.15G/3.94G [00:14<00:03, 225MB/s]\nopen_clip_pytorch_model.bin: 81%|████████ | 3.18G/3.94G [00:14<00:03, 226MB/s]\nopen_clip_pytorch_model.bin: 81%|████████▏ | 3.21G/3.94G [00:14<00:03, 223MB/s]\nopen_clip_pytorch_model.bin: 82%|████████▏ | 3.24G/3.94G [00:14<00:03, 221MB/s]\nopen_clip_pytorch_model.bin: 83%|████████▎ | 3.27G/3.94G [00:15<00:03, 222MB/s]\nopen_clip_pytorch_model.bin: 84%|████████▎ | 3.30G/3.94G [00:15<00:02, 223MB/s]\nopen_clip_pytorch_model.bin: 85%|████████▍ | 3.33G/3.94G [00:15<00:02, 225MB/s]\nopen_clip_pytorch_model.bin: 85%|████████▌ | 3.37G/3.94G [00:15<00:02, 228MB/s]\nopen_clip_pytorch_model.bin: 86%|████████▌ | 3.40G/3.94G [00:15<00:02, 225MB/s]\nopen_clip_pytorch_model.bin: 87%|████████▋ | 3.43G/3.94G [00:15<00:02, 226MB/s]\nopen_clip_pytorch_model.bin: 88%|████████▊ | 3.46G/3.94G [00:15<00:02, 227MB/s]\nopen_clip_pytorch_model.bin: 89%|████████▊ | 3.49G/3.94G [00:16<00:02, 220MB/s]\nopen_clip_pytorch_model.bin: 89%|████████▉ | 3.52G/3.94G [00:16<00:01, 224MB/s]\nopen_clip_pytorch_model.bin: 90%|█████████ | 3.55G/3.94G [00:16<00:01, 223MB/s]\nopen_clip_pytorch_model.bin: 91%|█████████ | 3.59G/3.94G [00:16<00:01, 210MB/s]\nopen_clip_pytorch_model.bin: 92%|█████████▏| 3.62G/3.94G [00:16<00:01, 213MB/s]\nopen_clip_pytorch_model.bin: 93%|█████████▎| 3.65G/3.94G [00:16<00:01, 219MB/s]\nopen_clip_pytorch_model.bin: 93%|█████████▎| 3.68G/3.94G [00:16<00:01, 222MB/s]\nopen_clip_pytorch_model.bin: 94%|█████████▍| 3.71G/3.94G [00:17<00:01, 225MB/s]\nopen_clip_pytorch_model.bin: 95%|█████████▍| 3.74G/3.94G [00:17<00:00, 222MB/s]\nopen_clip_pytorch_model.bin: 96%|█████████▌| 3.77G/3.94G [00:17<00:00, 222MB/s]\nopen_clip_pytorch_model.bin: 96%|█████████▋| 3.81G/3.94G [00:17<00:00, 224MB/s]\nopen_clip_pytorch_model.bin: 97%|█████████▋| 3.84G/3.94G [00:17<00:00, 227MB/s]\nopen_clip_pytorch_model.bin: 98%|█████████▊| 3.87G/3.94G [00:17<00:00, 224MB/s]\nopen_clip_pytorch_model.bin: 99%|█████████▉| 3.90G/3.94G [00:17<00:00, 229MB/s]\nopen_clip_pytorch_model.bin: 100%|█████████▉| 3.93G/3.94G [00:18<00:00, 230MB/s]\nopen_clip_pytorch_model.bin: 100%|██████████| 3.94G/3.94G [00:18<00:00, 217MB/s]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\nwarnings.warn(\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.\nwarnings.warn(msg)\nloaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nUsing seed: 10477\nGlobal seed set to 10477\ntimesteps used in spaced sampler:\n[0, 23, 45, 68, 91, 114, 136, 159, 182, 204, 227, 250, 272, 295, 318, 341, 363, 386, 409, 431, 454, 477, 499, 522, 545, 568, 590, 613, 636, 658, 681, 704, 727, 749, 772, 795, 817, 840, 863, 885, 908, 931, 954, 976, 999]\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]/src/model/q_sampler.py:467: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\ntao_index = torch.tensor(torch.round(index * t_max), dtype=torch.int64)\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]\u001b[A\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]\nSpaced Sampler: 2%|▏ | 1/45 [00:00<00:04, 9.38it/s]\u001b[A\nSpaced Sampler: 4%|▍ | 2/45 [00:00<00:04, 9.46it/s]\u001b[A\nSpaced Sampler: 7%|▋ | 3/45 [00:00<00:04, 9.48it/s]\u001b[A\nSpaced Sampler: 9%|▉ | 4/45 [00:00<00:04, 9.49it/s]\u001b[A\nSpaced Sampler: 11%|█ | 5/45 [00:00<00:04, 9.50it/s]\u001b[A\nSpaced Sampler: 13%|█▎ | 6/45 [00:00<00:04, 9.50it/s]\u001b[A\nSpaced Sampler: 16%|█▌ | 7/45 [00:00<00:03, 9.50it/s]\u001b[A\nSpaced Sampler: 18%|█▊ | 8/45 [00:00<00:03, 9.50it/s]\u001b[A\nSpaced Sampler: 20%|██ | 9/45 [00:00<00:03, 9.50it/s]\u001b[A\nSpaced Sampler: 22%|██▏ | 10/45 [00:01<00:03, 9.49it/s]\u001b[A\nSpaced Sampler: 24%|██▍ | 11/45 [00:01<00:03, 9.50it/s]\u001b[A\nSpaced Sampler: 27%|██▋ | 12/45 [00:01<00:03, 9.49it/s]\u001b[A\nSpaced Sampler: 29%|██▉ | 13/45 [00:01<00:03, 9.49it/s]\u001b[A\nSpaced Sampler: 31%|███ | 14/45 [00:01<00:03, 9.48it/s]\u001b[A\nSpaced Sampler: 33%|███▎ | 15/45 [00:01<00:03, 9.47it/s]\u001b[A\nSpaced Sampler: 33%|███▎ | 15/45 [00:01<00:03, 9.48it/s]", "metrics": { "predict_time": 43.505712, "total_time": 127.681527 }, "output": "https://replicate.delivery/pbxt/81Sg8aj3F7IBJRO9t7rnfrj2JDkjWfVjyQFI5hxm3Ky3jMNSA/out.png", "started_at": "2024-01-16T23:52:45.039006Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dpcxmxtbzg4lmduurxuupffsrm", "cancel": "https://api.replicate.com/v1/predictions/dpcxmxtbzg4lmduurxuupffsrm/cancel" }, "version": "b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947" }
Generated inControlLDM: Running in eps-prediction mode Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. DiffusionWrapper has 865.91 M params. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... open_clip_pytorch_model.bin: 0%| | 0.00/3.94G [00:00<?, ?B/s] open_clip_pytorch_model.bin: 0%| | 10.5M/3.94G [00:00<03:05, 21.2MB/s] open_clip_pytorch_model.bin: 1%| | 41.9M/3.94G [00:00<00:49, 78.1MB/s] open_clip_pytorch_model.bin: 2%|▏ | 73.4M/3.94G [00:00<00:32, 120MB/s] open_clip_pytorch_model.bin: 3%|▎ | 105M/3.94G [00:00<00:25, 152MB/s] open_clip_pytorch_model.bin: 3%|▎ | 136M/3.94G [00:01<00:21, 181MB/s] open_clip_pytorch_model.bin: 4%|▍ | 168M/3.94G [00:01<00:19, 196MB/s] open_clip_pytorch_model.bin: 5%|▌ | 199M/3.94G [00:01<00:18, 206MB/s] open_clip_pytorch_model.bin: 6%|▌ | 231M/3.94G [00:01<00:17, 214MB/s] open_clip_pytorch_model.bin: 7%|▋ | 262M/3.94G [00:01<00:16, 221MB/s] open_clip_pytorch_model.bin: 7%|▋ | 294M/3.94G [00:01<00:16, 224MB/s] open_clip_pytorch_model.bin: 8%|▊ | 325M/3.94G [00:01<00:16, 225MB/s] open_clip_pytorch_model.bin: 9%|▉ | 357M/3.94G [00:01<00:15, 226MB/s] open_clip_pytorch_model.bin: 10%|▉ | 388M/3.94G [00:02<00:15, 224MB/s] open_clip_pytorch_model.bin: 11%|█ | 419M/3.94G [00:02<00:15, 225MB/s] open_clip_pytorch_model.bin: 11%|█▏ | 451M/3.94G [00:02<00:15, 223MB/s] open_clip_pytorch_model.bin: 12%|█▏ | 482M/3.94G [00:02<00:15, 224MB/s] open_clip_pytorch_model.bin: 13%|█▎ | 514M/3.94G [00:02<00:15, 222MB/s] open_clip_pytorch_model.bin: 14%|█▍ | 545M/3.94G [00:02<00:15, 222MB/s] open_clip_pytorch_model.bin: 15%|█▍ | 577M/3.94G [00:02<00:15, 225MB/s] open_clip_pytorch_model.bin: 15%|█▌ | 608M/3.94G [00:03<00:14, 228MB/s] open_clip_pytorch_model.bin: 16%|█▌ | 640M/3.94G [00:03<00:13, 245MB/s] open_clip_pytorch_model.bin: 17%|█▋ | 671M/3.94G [00:03<00:14, 232MB/s] open_clip_pytorch_model.bin: 18%|█▊ | 703M/3.94G [00:03<00:15, 216MB/s] open_clip_pytorch_model.bin: 19%|█▊ | 734M/3.94G [00:03<00:15, 211MB/s] open_clip_pytorch_model.bin: 19%|█▉ | 765M/3.94G [00:03<00:14, 214MB/s] open_clip_pytorch_model.bin: 20%|██ | 807M/3.94G [00:03<00:13, 231MB/s] open_clip_pytorch_model.bin: 21%|██▏ | 839M/3.94G [00:04<00:13, 231MB/s] open_clip_pytorch_model.bin: 22%|██▏ | 870M/3.94G [00:04<00:13, 229MB/s] open_clip_pytorch_model.bin: 23%|██▎ | 902M/3.94G [00:04<00:13, 226MB/s] open_clip_pytorch_model.bin: 24%|██▎ | 933M/3.94G [00:04<00:13, 219MB/s] open_clip_pytorch_model.bin: 24%|██▍ | 965M/3.94G [00:04<00:13, 223MB/s] open_clip_pytorch_model.bin: 25%|██▌ | 996M/3.94G [00:04<00:13, 225MB/s] open_clip_pytorch_model.bin: 26%|██▌ | 1.03G/3.94G [00:04<00:12, 225MB/s] open_clip_pytorch_model.bin: 27%|██▋ | 1.06G/3.94G [00:05<00:13, 217MB/s] open_clip_pytorch_model.bin: 28%|██▊ | 1.09G/3.94G [00:05<00:12, 222MB/s] open_clip_pytorch_model.bin: 28%|██▊ | 1.12G/3.94G [00:05<00:12, 223MB/s] open_clip_pytorch_model.bin: 29%|██▉ | 1.15G/3.94G [00:05<00:12, 223MB/s] open_clip_pytorch_model.bin: 30%|███ | 1.18G/3.94G [00:05<00:12, 224MB/s] open_clip_pytorch_model.bin: 31%|███ | 1.22G/3.94G [00:05<00:12, 222MB/s] open_clip_pytorch_model.bin: 32%|███▏ | 1.25G/3.94G [00:05<00:12, 224MB/s] open_clip_pytorch_model.bin: 32%|███▏ | 1.28G/3.94G [00:06<00:11, 223MB/s] open_clip_pytorch_model.bin: 33%|███▎ | 1.31G/3.94G [00:06<00:11, 224MB/s] open_clip_pytorch_model.bin: 34%|███▍ | 1.34G/3.94G [00:06<00:11, 228MB/s] open_clip_pytorch_model.bin: 35%|███▍ | 1.37G/3.94G [00:06<00:11, 229MB/s] open_clip_pytorch_model.bin: 36%|███▌ | 1.41G/3.94G [00:06<00:11, 225MB/s] open_clip_pytorch_model.bin: 36%|███▋ | 1.44G/3.94G [00:06<00:11, 225MB/s] open_clip_pytorch_model.bin: 37%|███▋ | 1.47G/3.94G [00:06<00:10, 226MB/s] open_clip_pytorch_model.bin: 38%|███▊ | 1.50G/3.94G [00:07<00:10, 222MB/s] open_clip_pytorch_model.bin: 39%|███▉ | 1.53G/3.94G [00:07<00:10, 223MB/s] open_clip_pytorch_model.bin: 40%|███▉ | 1.56G/3.94G [00:07<00:10, 221MB/s] open_clip_pytorch_model.bin: 40%|████ | 1.59G/3.94G [00:07<00:10, 219MB/s] open_clip_pytorch_model.bin: 41%|████ | 1.63G/3.94G [00:07<00:10, 222MB/s] open_clip_pytorch_model.bin: 42%|████▏ | 1.66G/3.94G [00:07<00:10, 221MB/s] open_clip_pytorch_model.bin: 43%|████▎ | 1.69G/3.94G [00:07<00:10, 223MB/s] open_clip_pytorch_model.bin: 44%|████▎ | 1.72G/3.94G [00:08<00:09, 227MB/s] open_clip_pytorch_model.bin: 44%|████▍ | 1.75G/3.94G [00:08<00:09, 226MB/s] open_clip_pytorch_model.bin: 45%|████▌ | 1.78G/3.94G [00:08<00:09, 224MB/s] open_clip_pytorch_model.bin: 46%|████▌ | 1.81G/3.94G [00:08<00:09, 225MB/s] open_clip_pytorch_model.bin: 47%|████▋ | 1.85G/3.94G [00:08<00:09, 227MB/s] open_clip_pytorch_model.bin: 48%|████▊ | 1.88G/3.94G [00:08<00:09, 226MB/s] open_clip_pytorch_model.bin: 48%|████▊ | 1.91G/3.94G [00:08<00:09, 225MB/s] open_clip_pytorch_model.bin: 49%|████▉ | 1.94G/3.94G [00:09<00:08, 226MB/s] open_clip_pytorch_model.bin: 50%|████▉ | 1.97G/3.94G [00:09<00:08, 226MB/s] open_clip_pytorch_model.bin: 51%|█████ | 2.00G/3.94G [00:09<00:08, 226MB/s] open_clip_pytorch_model.bin: 52%|█████▏ | 2.03G/3.94G [00:09<00:08, 228MB/s] open_clip_pytorch_model.bin: 52%|█████▏ | 2.07G/3.94G [00:09<00:08, 228MB/s] open_clip_pytorch_model.bin: 53%|█████▎ | 2.10G/3.94G [00:09<00:08, 228MB/s] open_clip_pytorch_model.bin: 54%|█████▍ | 2.13G/3.94G [00:09<00:07, 228MB/s] open_clip_pytorch_model.bin: 55%|█████▍ | 2.16G/3.94G [00:10<00:07, 230MB/s] open_clip_pytorch_model.bin: 56%|█████▌ | 2.19G/3.94G [00:10<00:07, 226MB/s] open_clip_pytorch_model.bin: 56%|█████▋ | 2.22G/3.94G [00:10<00:07, 230MB/s] open_clip_pytorch_model.bin: 57%|█████▋ | 2.25G/3.94G [00:10<00:07, 228MB/s] open_clip_pytorch_model.bin: 58%|█████▊ | 2.29G/3.94G [00:10<00:07, 228MB/s] open_clip_pytorch_model.bin: 59%|█████▊ | 2.32G/3.94G [00:10<00:07, 227MB/s] open_clip_pytorch_model.bin: 60%|█████▉ | 2.35G/3.94G [00:10<00:06, 230MB/s] open_clip_pytorch_model.bin: 60%|██████ | 2.38G/3.94G [00:10<00:06, 229MB/s] open_clip_pytorch_model.bin: 61%|██████ | 2.41G/3.94G [00:11<00:06, 228MB/s] open_clip_pytorch_model.bin: 62%|██████▏ | 2.44G/3.94G [00:11<00:06, 227MB/s] open_clip_pytorch_model.bin: 63%|██████▎ | 2.47G/3.94G [00:11<00:06, 228MB/s] open_clip_pytorch_model.bin: 64%|██████▎ | 2.51G/3.94G [00:11<00:06, 224MB/s] open_clip_pytorch_model.bin: 64%|██████▍ | 2.54G/3.94G [00:11<00:06, 227MB/s] open_clip_pytorch_model.bin: 65%|██████▌ | 2.57G/3.94G [00:11<00:06, 228MB/s] open_clip_pytorch_model.bin: 66%|██████▌ | 2.60G/3.94G [00:11<00:05, 231MB/s] open_clip_pytorch_model.bin: 67%|██████▋ | 2.63G/3.94G [00:12<00:05, 227MB/s] open_clip_pytorch_model.bin: 68%|██████▊ | 2.66G/3.94G [00:12<00:08, 148MB/s] open_clip_pytorch_model.bin: 68%|██████▊ | 2.69G/3.94G [00:12<00:07, 166MB/s] open_clip_pytorch_model.bin: 69%|██████▉ | 2.73G/3.94G [00:12<00:06, 182MB/s] open_clip_pytorch_model.bin: 70%|██████▉ | 2.76G/3.94G [00:12<00:06, 194MB/s] open_clip_pytorch_model.bin: 71%|███████ | 2.79G/3.94G [00:13<00:05, 201MB/s] open_clip_pytorch_model.bin: 72%|███████▏ | 2.82G/3.94G [00:13<00:05, 210MB/s] open_clip_pytorch_model.bin: 72%|███████▏ | 2.85G/3.94G [00:13<00:05, 216MB/s] open_clip_pytorch_model.bin: 73%|███████▎ | 2.89G/3.94G [00:13<00:04, 233MB/s] open_clip_pytorch_model.bin: 74%|███████▍ | 2.93G/3.94G [00:13<00:04, 229MB/s] open_clip_pytorch_model.bin: 75%|███████▍ | 2.96G/3.94G [00:13<00:04, 230MB/s] open_clip_pytorch_model.bin: 76%|███████▌ | 2.99G/3.94G [00:13<00:04, 233MB/s] open_clip_pytorch_model.bin: 77%|███████▋ | 3.02G/3.94G [00:13<00:03, 235MB/s] open_clip_pytorch_model.bin: 77%|███████▋ | 3.05G/3.94G [00:14<00:03, 233MB/s] open_clip_pytorch_model.bin: 78%|███████▊ | 3.08G/3.94G [00:14<00:03, 232MB/s] open_clip_pytorch_model.bin: 79%|███████▉ | 3.11G/3.94G [00:14<00:03, 230MB/s] open_clip_pytorch_model.bin: 80%|███████▉ | 3.15G/3.94G [00:14<00:03, 225MB/s] open_clip_pytorch_model.bin: 81%|████████ | 3.18G/3.94G [00:14<00:03, 226MB/s] open_clip_pytorch_model.bin: 81%|████████▏ | 3.21G/3.94G [00:14<00:03, 223MB/s] open_clip_pytorch_model.bin: 82%|████████▏ | 3.24G/3.94G [00:14<00:03, 221MB/s] open_clip_pytorch_model.bin: 83%|████████▎ | 3.27G/3.94G [00:15<00:03, 222MB/s] open_clip_pytorch_model.bin: 84%|████████▎ | 3.30G/3.94G [00:15<00:02, 223MB/s] open_clip_pytorch_model.bin: 85%|████████▍ | 3.33G/3.94G [00:15<00:02, 225MB/s] open_clip_pytorch_model.bin: 85%|████████▌ | 3.37G/3.94G [00:15<00:02, 228MB/s] open_clip_pytorch_model.bin: 86%|████████▌ | 3.40G/3.94G [00:15<00:02, 225MB/s] open_clip_pytorch_model.bin: 87%|████████▋ | 3.43G/3.94G [00:15<00:02, 226MB/s] open_clip_pytorch_model.bin: 88%|████████▊ | 3.46G/3.94G [00:15<00:02, 227MB/s] open_clip_pytorch_model.bin: 89%|████████▊ | 3.49G/3.94G [00:16<00:02, 220MB/s] open_clip_pytorch_model.bin: 89%|████████▉ | 3.52G/3.94G [00:16<00:01, 224MB/s] open_clip_pytorch_model.bin: 90%|█████████ | 3.55G/3.94G [00:16<00:01, 223MB/s] open_clip_pytorch_model.bin: 91%|█████████ | 3.59G/3.94G [00:16<00:01, 210MB/s] open_clip_pytorch_model.bin: 92%|█████████▏| 3.62G/3.94G [00:16<00:01, 213MB/s] open_clip_pytorch_model.bin: 93%|█████████▎| 3.65G/3.94G [00:16<00:01, 219MB/s] open_clip_pytorch_model.bin: 93%|█████████▎| 3.68G/3.94G [00:16<00:01, 222MB/s] open_clip_pytorch_model.bin: 94%|█████████▍| 3.71G/3.94G [00:17<00:01, 225MB/s] open_clip_pytorch_model.bin: 95%|█████████▍| 3.74G/3.94G [00:17<00:00, 222MB/s] open_clip_pytorch_model.bin: 96%|█████████▌| 3.77G/3.94G [00:17<00:00, 222MB/s] open_clip_pytorch_model.bin: 96%|█████████▋| 3.81G/3.94G [00:17<00:00, 224MB/s] open_clip_pytorch_model.bin: 97%|█████████▋| 3.84G/3.94G [00:17<00:00, 227MB/s] open_clip_pytorch_model.bin: 98%|█████████▊| 3.87G/3.94G [00:17<00:00, 224MB/s] open_clip_pytorch_model.bin: 99%|█████████▉| 3.90G/3.94G [00:17<00:00, 229MB/s] open_clip_pytorch_model.bin: 100%|█████████▉| 3.93G/3.94G [00:18<00:00, 230MB/s] open_clip_pytorch_model.bin: 100%|██████████| 3.94G/3.94G [00:18<00:00, 217MB/s] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) loaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Using seed: 10477 Global seed set to 10477 timesteps used in spaced sampler: [0, 23, 45, 68, 91, 114, 136, 159, 182, 204, 227, 250, 272, 295, 318, 341, 363, 386, 409, 431, 454, 477, 499, 522, 545, 568, 590, 613, 636, 658, 681, 704, 727, 749, 772, 795, 817, 840, 863, 885, 908, 931, 954, 976, 999] Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]/src/model/q_sampler.py:467: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). tao_index = torch.tensor(torch.round(index * t_max), dtype=torch.int64) Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s] Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s] Spaced Sampler: 2%|▏ | 1/45 [00:00<00:04, 9.38it/s] Spaced Sampler: 4%|▍ | 2/45 [00:00<00:04, 9.46it/s] Spaced Sampler: 7%|▋ | 3/45 [00:00<00:04, 9.48it/s] Spaced Sampler: 9%|▉ | 4/45 [00:00<00:04, 9.49it/s] Spaced Sampler: 11%|█ | 5/45 [00:00<00:04, 9.50it/s] Spaced Sampler: 13%|█▎ | 6/45 [00:00<00:04, 9.50it/s] Spaced Sampler: 16%|█▌ | 7/45 [00:00<00:03, 9.50it/s] Spaced Sampler: 18%|█▊ | 8/45 [00:00<00:03, 9.50it/s] Spaced Sampler: 20%|██ | 9/45 [00:00<00:03, 9.50it/s] Spaced Sampler: 22%|██▏ | 10/45 [00:01<00:03, 9.49it/s] Spaced Sampler: 24%|██▍ | 11/45 [00:01<00:03, 9.50it/s] Spaced Sampler: 27%|██▋ | 12/45 [00:01<00:03, 9.49it/s] Spaced Sampler: 29%|██▉ | 13/45 [00:01<00:03, 9.49it/s] Spaced Sampler: 31%|███ | 14/45 [00:01<00:03, 9.48it/s] Spaced Sampler: 33%|███▎ | 15/45 [00:01<00:03, 9.47it/s] Spaced Sampler: 33%|███▎ | 15/45 [00:01<00:03, 9.48it/s]
Prediction
csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947ModelIDku43wdtbeicfhxbrc3odcehdx4StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- steps
- 45
- t_max
- 0.6667
- t_min
- 0.3333
- sr_scale
- 4
- tile_vae
- color_fix_type
- adain
- tile_diffusion
- tile_diffusion_size
- 512
- tile_diffusion_stride
- 256
- vae_decoder_tile_size
- 224
- vae_encoder_tile_size
- 1024
{ "image": "https://replicate.delivery/pbxt/KEsL8qx725guGDgsIH3NX0G8TElQ9Fkp9JuzM0GWwCWXUi3u/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", { input: { image: "https://replicate.delivery/pbxt/KEsL8qx725guGDgsIH3NX0G8TElQ9Fkp9JuzM0GWwCWXUi3u/19.jpg", steps: 45, t_max: 0.6667, t_min: 0.3333, sr_scale: 4, tile_vae: false, color_fix_type: "adain", tile_diffusion: false, tile_diffusion_size: 512, tile_diffusion_stride: 256, vae_decoder_tile_size: 224, vae_encoder_tile_size: 1024 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", input={ "image": "https://replicate.delivery/pbxt/KEsL8qx725guGDgsIH3NX0G8TElQ9Fkp9JuzM0GWwCWXUi3u/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": False, "color_fix_type": "adain", "tile_diffusion": False, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", "input": { "image": "https://replicate.delivery/pbxt/KEsL8qx725guGDgsIH3NX0G8TElQ9Fkp9JuzM0GWwCWXUi3u/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-17T00:05:00.216889Z", "created_at": "2024-01-17T00:02:49.775810Z", "data_removed": false, "error": null, "id": "ku43wdtbeicfhxbrc3odcehdx4", "input": { "image": "https://replicate.delivery/pbxt/KEsL8qx725guGDgsIH3NX0G8TElQ9Fkp9JuzM0GWwCWXUi3u/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 }, "logs": "ControlLDM: Running in eps-prediction mode\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nDiffusionWrapper has 865.91 M params.\nmaking attention of type 'vanilla-xformers' with 512 in_channels\nbuilding MemoryEfficientAttnBlock with 512 in_channels...\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla-xformers' with 512 in_channels\nbuilding MemoryEfficientAttnBlock with 512 in_channels...\nopen_clip_pytorch_model.bin: 0%| | 0.00/3.94G [00:00<?, ?B/s]\nopen_clip_pytorch_model.bin: 0%| | 10.5M/3.94G [00:00<02:40, 24.4MB/s]\nopen_clip_pytorch_model.bin: 1%| | 41.9M/3.94G [00:00<00:44, 87.9MB/s]\nopen_clip_pytorch_model.bin: 2%|▏ | 73.4M/3.94G [00:00<00:28, 136MB/s] \nopen_clip_pytorch_model.bin: 3%|▎ | 105M/3.94G [00:00<00:22, 167MB/s] \nopen_clip_pytorch_model.bin: 3%|▎ | 136M/3.94G [00:00<00:19, 190MB/s]\nopen_clip_pytorch_model.bin: 4%|▍ | 168M/3.94G [00:01<00:18, 207MB/s]\nopen_clip_pytorch_model.bin: 5%|▌ | 199M/3.94G [00:01<00:16, 221MB/s]\nopen_clip_pytorch_model.bin: 6%|▌ | 231M/3.94G [00:01<00:16, 224MB/s]\nopen_clip_pytorch_model.bin: 7%|▋ | 262M/3.94G [00:01<00:15, 232MB/s]\nopen_clip_pytorch_model.bin: 8%|▊ | 304M/3.94G [00:01<00:14, 251MB/s]\nopen_clip_pytorch_model.bin: 9%|▊ | 336M/3.94G [00:01<00:14, 249MB/s]\nopen_clip_pytorch_model.bin: 9%|▉ | 367M/3.94G [00:01<00:15, 237MB/s]\nopen_clip_pytorch_model.bin: 10%|█ | 398M/3.94G [00:02<00:14, 239MB/s]\nopen_clip_pytorch_model.bin: 11%|█ | 430M/3.94G [00:02<00:14, 244MB/s]\nopen_clip_pytorch_model.bin: 12%|█▏ | 461M/3.94G [00:02<00:14, 240MB/s]\nopen_clip_pytorch_model.bin: 12%|█▏ | 493M/3.94G [00:02<00:14, 244MB/s]\nopen_clip_pytorch_model.bin: 13%|█▎ | 524M/3.94G [00:02<00:13, 247MB/s]\nopen_clip_pytorch_model.bin: 14%|█▍ | 556M/3.94G [00:02<00:13, 246MB/s]\nopen_clip_pytorch_model.bin: 15%|█▍ | 587M/3.94G [00:02<00:13, 252MB/s]\nopen_clip_pytorch_model.bin: 16%|█▌ | 619M/3.94G [00:02<00:13, 249MB/s]\nopen_clip_pytorch_model.bin: 16%|█▋ | 650M/3.94G [00:03<00:13, 249MB/s]\nopen_clip_pytorch_model.bin: 17%|█▋ | 682M/3.94G [00:03<00:13, 247MB/s]\nopen_clip_pytorch_model.bin: 18%|█▊ | 713M/3.94G [00:03<00:13, 248MB/s]\nopen_clip_pytorch_model.bin: 19%|█▉ | 744M/3.94G [00:03<00:12, 247MB/s]\nopen_clip_pytorch_model.bin: 20%|█▉ | 776M/3.94G [00:03<00:12, 244MB/s]\nopen_clip_pytorch_model.bin: 20%|██ | 807M/3.94G [00:03<00:12, 245MB/s]\nopen_clip_pytorch_model.bin: 21%|██▏ | 839M/3.94G [00:03<00:12, 241MB/s]\nopen_clip_pytorch_model.bin: 22%|██▏ | 870M/3.94G [00:03<00:12, 243MB/s]\nopen_clip_pytorch_model.bin: 23%|██▎ | 902M/3.94G [00:04<00:12, 247MB/s]\nopen_clip_pytorch_model.bin: 24%|██▎ | 933M/3.94G [00:04<00:12, 248MB/s]\nopen_clip_pytorch_model.bin: 24%|██▍ | 965M/3.94G [00:04<00:12, 247MB/s]\nopen_clip_pytorch_model.bin: 25%|██▌ | 996M/3.94G [00:04<00:11, 251MB/s]\nopen_clip_pytorch_model.bin: 26%|██▌ | 1.03G/3.94G [00:04<00:11, 251MB/s]\nopen_clip_pytorch_model.bin: 27%|██▋ | 1.06G/3.94G [00:04<00:11, 251MB/s]\nopen_clip_pytorch_model.bin: 28%|██▊ | 1.09G/3.94G [00:04<00:11, 242MB/s]\nopen_clip_pytorch_model.bin: 28%|██▊ | 1.12G/3.94G [00:04<00:11, 238MB/s]\nopen_clip_pytorch_model.bin: 29%|██▉ | 1.15G/3.94G [00:05<00:12, 226MB/s]\nopen_clip_pytorch_model.bin: 30%|███ | 1.18G/3.94G [00:05<00:11, 233MB/s]\nopen_clip_pytorch_model.bin: 31%|███ | 1.22G/3.94G [00:05<00:13, 210MB/s]\nopen_clip_pytorch_model.bin: 32%|███▏ | 1.25G/3.94G [00:05<00:12, 213MB/s]\nopen_clip_pytorch_model.bin: 32%|███▏ | 1.28G/3.94G [00:05<00:11, 223MB/s]\nopen_clip_pytorch_model.bin: 33%|███▎ | 1.31G/3.94G [00:05<00:13, 197MB/s]\nopen_clip_pytorch_model.bin: 34%|███▍ | 1.33G/3.94G [00:05<00:13, 198MB/s]\nopen_clip_pytorch_model.bin: 35%|███▍ | 1.36G/3.94G [00:06<00:12, 209MB/s]\nopen_clip_pytorch_model.bin: 35%|███▌ | 1.39G/3.94G [00:06<00:11, 216MB/s]\nopen_clip_pytorch_model.bin: 36%|███▌ | 1.43G/3.94G [00:06<00:13, 193MB/s]\nopen_clip_pytorch_model.bin: 37%|███▋ | 1.46G/3.94G [00:06<00:11, 208MB/s]\nopen_clip_pytorch_model.bin: 38%|███▊ | 1.49G/3.94G [00:06<00:10, 228MB/s]\nopen_clip_pytorch_model.bin: 39%|███▊ | 1.52G/3.94G [00:06<00:11, 217MB/s]\nopen_clip_pytorch_model.bin: 39%|███▉ | 1.55G/3.94G [00:07<00:13, 174MB/s]\nopen_clip_pytorch_model.bin: 40%|████ | 1.58G/3.94G [00:07<00:12, 186MB/s]\nopen_clip_pytorch_model.bin: 41%|████ | 1.61G/3.94G [00:07<00:11, 196MB/s]\nopen_clip_pytorch_model.bin: 42%|████▏ | 1.65G/3.94G [00:07<00:11, 207MB/s]\nopen_clip_pytorch_model.bin: 43%|████▎ | 1.68G/3.94G [00:07<00:10, 218MB/s]\nopen_clip_pytorch_model.bin: 43%|████▎ | 1.71G/3.94G [00:07<00:09, 227MB/s]\nopen_clip_pytorch_model.bin: 44%|████▍ | 1.74G/3.94G [00:07<00:09, 229MB/s]\nopen_clip_pytorch_model.bin: 45%|████▍ | 1.77G/3.94G [00:08<00:09, 239MB/s]\nopen_clip_pytorch_model.bin: 46%|████▌ | 1.80G/3.94G [00:08<00:08, 245MB/s]\nopen_clip_pytorch_model.bin: 47%|████▋ | 1.84G/3.94G [00:08<00:08, 241MB/s]\nopen_clip_pytorch_model.bin: 47%|████▋ | 1.87G/3.94G [00:08<00:08, 242MB/s]\nopen_clip_pytorch_model.bin: 48%|████▊ | 1.90G/3.94G [00:08<00:08, 241MB/s]\nopen_clip_pytorch_model.bin: 49%|████▉ | 1.93G/3.94G [00:08<00:08, 245MB/s]\nopen_clip_pytorch_model.bin: 50%|████▉ | 1.96G/3.94G [00:08<00:08, 242MB/s]\nopen_clip_pytorch_model.bin: 51%|█████ | 1.99G/3.94G [00:08<00:08, 241MB/s]\nopen_clip_pytorch_model.bin: 51%|█████▏ | 2.02G/3.94G [00:09<00:08, 239MB/s]\nopen_clip_pytorch_model.bin: 52%|█████▏ | 2.06G/3.94G [00:09<00:07, 242MB/s]\nopen_clip_pytorch_model.bin: 53%|█████▎ | 2.09G/3.94G [00:09<00:07, 242MB/s]\nopen_clip_pytorch_model.bin: 54%|█████▎ | 2.12G/3.94G [00:09<00:07, 235MB/s]\nopen_clip_pytorch_model.bin: 54%|█████▍ | 2.15G/3.94G [00:09<00:07, 240MB/s]\nopen_clip_pytorch_model.bin: 55%|█████▌ | 2.18G/3.94G [00:09<00:07, 245MB/s]\nopen_clip_pytorch_model.bin: 56%|█████▌ | 2.21G/3.94G [00:09<00:07, 245MB/s]\nopen_clip_pytorch_model.bin: 57%|█████▋ | 2.24G/3.94G [00:09<00:06, 247MB/s]\nopen_clip_pytorch_model.bin: 58%|█████▊ | 2.28G/3.94G [00:10<00:06, 247MB/s]\nopen_clip_pytorch_model.bin: 58%|█████▊ | 2.31G/3.94G [00:10<00:06, 248MB/s]\nopen_clip_pytorch_model.bin: 59%|█████▉ | 2.34G/3.94G [00:10<00:06, 251MB/s]\nopen_clip_pytorch_model.bin: 60%|██████ | 2.37G/3.94G [00:10<00:06, 248MB/s]\nopen_clip_pytorch_model.bin: 61%|██████ | 2.40G/3.94G [00:10<00:05, 261MB/s]\nopen_clip_pytorch_model.bin: 62%|██████▏ | 2.43G/3.94G [00:10<00:06, 242MB/s]\nopen_clip_pytorch_model.bin: 62%|██████▏ | 2.46G/3.94G [00:10<00:06, 246MB/s]\nopen_clip_pytorch_model.bin: 63%|██████▎ | 2.50G/3.94G [00:10<00:05, 250MB/s]\nopen_clip_pytorch_model.bin: 64%|██████▍ | 2.53G/3.94G [00:11<00:05, 245MB/s]\nopen_clip_pytorch_model.bin: 65%|██████▍ | 2.56G/3.94G [00:11<00:09, 151MB/s]\nopen_clip_pytorch_model.bin: 66%|██████▌ | 2.59G/3.94G [00:11<00:07, 170MB/s]\nopen_clip_pytorch_model.bin: 66%|██████▋ | 2.62G/3.94G [00:11<00:07, 184MB/s]\nopen_clip_pytorch_model.bin: 67%|██████▋ | 2.65G/3.94G [00:11<00:07, 182MB/s]\nopen_clip_pytorch_model.bin: 68%|██████▊ | 2.68G/3.94G [00:12<00:06, 192MB/s]\nopen_clip_pytorch_model.bin: 69%|██████▉ | 2.72G/3.94G [00:12<00:05, 206MB/s]\nopen_clip_pytorch_model.bin: 70%|██████▉ | 2.75G/3.94G [00:12<00:06, 191MB/s]\nopen_clip_pytorch_model.bin: 70%|███████ | 2.77G/3.94G [00:12<00:06, 192MB/s]\nopen_clip_pytorch_model.bin: 71%|███████ | 2.79G/3.94G [00:12<00:05, 195MB/s]\nopen_clip_pytorch_model.bin: 72%|███████▏ | 2.82G/3.94G [00:12<00:05, 210MB/s]\nopen_clip_pytorch_model.bin: 72%|███████▏ | 2.85G/3.94G [00:12<00:05, 216MB/s]\nopen_clip_pytorch_model.bin: 73%|███████▎ | 2.88G/3.94G [00:13<00:04, 227MB/s]\nopen_clip_pytorch_model.bin: 74%|███████▍ | 2.92G/3.94G [00:13<00:04, 237MB/s]\nopen_clip_pytorch_model.bin: 75%|███████▍ | 2.95G/3.94G [00:13<00:04, 246MB/s]\nopen_clip_pytorch_model.bin: 75%|███████▌ | 2.98G/3.94G [00:13<00:04, 229MB/s]\nopen_clip_pytorch_model.bin: 76%|███████▋ | 3.01G/3.94G [00:13<00:04, 232MB/s]\nopen_clip_pytorch_model.bin: 77%|███████▋ | 3.04G/3.94G [00:13<00:03, 236MB/s]\nopen_clip_pytorch_model.bin: 78%|███████▊ | 3.07G/3.94G [00:13<00:03, 238MB/s]\nopen_clip_pytorch_model.bin: 79%|███████▊ | 3.10G/3.94G [00:13<00:03, 226MB/s]\nopen_clip_pytorch_model.bin: 79%|███████▉ | 3.14G/3.94G [00:14<00:03, 228MB/s]\nopen_clip_pytorch_model.bin: 80%|████████ | 3.17G/3.94G [00:14<00:03, 236MB/s]\nopen_clip_pytorch_model.bin: 81%|████████ | 3.20G/3.94G [00:14<00:03, 237MB/s]\nopen_clip_pytorch_model.bin: 82%|████████▏ | 3.23G/3.94G [00:14<00:03, 236MB/s]\nopen_clip_pytorch_model.bin: 83%|████████▎ | 3.26G/3.94G [00:14<00:02, 240MB/s]\nopen_clip_pytorch_model.bin: 83%|████████▎ | 3.29G/3.94G [00:14<00:02, 236MB/s]\nopen_clip_pytorch_model.bin: 84%|████████▍ | 3.32G/3.94G [00:14<00:02, 235MB/s]\nopen_clip_pytorch_model.bin: 85%|████████▌ | 3.36G/3.94G [00:15<00:02, 238MB/s]\nopen_clip_pytorch_model.bin: 86%|████████▌ | 3.39G/3.94G [00:15<00:02, 236MB/s]\nopen_clip_pytorch_model.bin: 87%|████████▋ | 3.42G/3.94G [00:15<00:02, 241MB/s]\nopen_clip_pytorch_model.bin: 87%|████████▋ | 3.45G/3.94G [00:15<00:02, 215MB/s]\nopen_clip_pytorch_model.bin: 88%|████████▊ | 3.48G/3.94G [00:15<00:02, 186MB/s]\nopen_clip_pytorch_model.bin: 89%|████████▉ | 3.51G/3.94G [00:15<00:02, 192MB/s]\nopen_clip_pytorch_model.bin: 90%|████████▉ | 3.54G/3.94G [00:15<00:01, 205MB/s]\nopen_clip_pytorch_model.bin: 91%|█████████ | 3.58G/3.94G [00:16<00:01, 221MB/s]\nopen_clip_pytorch_model.bin: 91%|█████████▏| 3.61G/3.94G [00:16<00:01, 222MB/s]\nopen_clip_pytorch_model.bin: 92%|█████████▏| 3.64G/3.94G [00:16<00:01, 229MB/s]\nopen_clip_pytorch_model.bin: 93%|█████████▎| 3.67G/3.94G [00:16<00:01, 223MB/s]\nopen_clip_pytorch_model.bin: 94%|█████████▍| 3.70G/3.94G [00:16<00:01, 230MB/s]\nopen_clip_pytorch_model.bin: 95%|█████████▍| 3.73G/3.94G [00:16<00:00, 227MB/s]\nopen_clip_pytorch_model.bin: 95%|█████████▌| 3.76G/3.94G [00:16<00:00, 220MB/s]\nopen_clip_pytorch_model.bin: 96%|█████████▌| 3.80G/3.94G [00:17<00:00, 199MB/s]\nopen_clip_pytorch_model.bin: 97%|█████████▋| 3.82G/3.94G [00:17<00:00, 157MB/s]\nopen_clip_pytorch_model.bin: 97%|█████████▋| 3.84G/3.94G [00:17<00:00, 147MB/s]\nopen_clip_pytorch_model.bin: 98%|█████████▊| 3.87G/3.94G [00:17<00:00, 167MB/s]\nopen_clip_pytorch_model.bin: 99%|█████████▊| 3.89G/3.94G [00:17<00:00, 164MB/s]\nopen_clip_pytorch_model.bin: 99%|█████████▉| 3.91G/3.94G [00:17<00:00, 151MB/s]\nopen_clip_pytorch_model.bin: 100%|█████████▉| 3.93G/3.94G [00:18<00:00, 162MB/s]\nopen_clip_pytorch_model.bin: 100%|██████████| 3.94G/3.94G [00:18<00:00, 218MB/s]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\nwarnings.warn(\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.\nwarnings.warn(msg)\nloaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nUsing seed: 60190\nGlobal seed set to 60190\ntimesteps used in spaced sampler:\n[0, 23, 45, 68, 91, 114, 136, 159, 182, 204, 227, 250, 272, 295, 318, 341, 363, 386, 409, 431, 454, 477, 499, 522, 545, 568, 590, 613, 636, 658, 681, 704, 727, 749, 772, 795, 817, 840, 863, 885, 908, 931, 954, 976, 999]\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]/src/model/q_sampler.py:467: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\ntao_index = torch.tensor(torch.round(index * t_max), dtype=torch.int64)\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]\u001b[A\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]\nSpaced Sampler: 2%|▏ | 1/45 [00:00<00:08, 5.21it/s]\u001b[A\nSpaced Sampler: 4%|▍ | 2/45 [00:00<00:08, 5.23it/s]\u001b[A\nSpaced Sampler: 7%|▋ | 3/45 [00:00<00:08, 5.23it/s]\u001b[A\nSpaced Sampler: 9%|▉ | 4/45 [00:00<00:07, 5.23it/s]\u001b[A\nSpaced Sampler: 11%|█ | 5/45 [00:00<00:07, 5.23it/s]\u001b[A\nSpaced Sampler: 13%|█▎ | 6/45 [00:01<00:07, 5.22it/s]\u001b[A\nSpaced Sampler: 16%|█▌ | 7/45 [00:01<00:07, 5.22it/s]\u001b[A\nSpaced Sampler: 18%|█▊ | 8/45 [00:01<00:07, 5.22it/s]\u001b[A\nSpaced Sampler: 20%|██ | 9/45 [00:01<00:06, 5.21it/s]\u001b[A\nSpaced Sampler: 22%|██▏ | 10/45 [00:01<00:06, 5.22it/s]\u001b[A\nSpaced Sampler: 24%|██▍ | 11/45 [00:02<00:06, 5.22it/s]\u001b[A\nSpaced Sampler: 27%|██▋ | 12/45 [00:02<00:06, 5.22it/s]\u001b[A\nSpaced Sampler: 29%|██▉ | 13/45 [00:02<00:06, 5.22it/s]\u001b[A\nSpaced Sampler: 31%|███ | 14/45 [00:02<00:05, 5.22it/s]\u001b[A\nSpaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s]\u001b[A\nSpaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s]", "metrics": { "predict_time": 45.666332, "total_time": 130.441079 }, "output": "https://replicate.delivery/pbxt/uuPXTeVX8h30Wq4Bp16TJcCbI0Vf5M5sUO2nVucR4mjruMNSA/out.png", "started_at": "2024-01-17T00:04:14.550557Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ku43wdtbeicfhxbrc3odcehdx4", "cancel": "https://api.replicate.com/v1/predictions/ku43wdtbeicfhxbrc3odcehdx4/cancel" }, "version": "b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947" }
Generated inControlLDM: Running in eps-prediction mode Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. DiffusionWrapper has 865.91 M params. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... open_clip_pytorch_model.bin: 0%| | 0.00/3.94G [00:00<?, ?B/s] open_clip_pytorch_model.bin: 0%| | 10.5M/3.94G [00:00<02:40, 24.4MB/s] open_clip_pytorch_model.bin: 1%| | 41.9M/3.94G [00:00<00:44, 87.9MB/s] open_clip_pytorch_model.bin: 2%|▏ | 73.4M/3.94G [00:00<00:28, 136MB/s] open_clip_pytorch_model.bin: 3%|▎ | 105M/3.94G [00:00<00:22, 167MB/s] open_clip_pytorch_model.bin: 3%|▎ | 136M/3.94G [00:00<00:19, 190MB/s] open_clip_pytorch_model.bin: 4%|▍ | 168M/3.94G [00:01<00:18, 207MB/s] open_clip_pytorch_model.bin: 5%|▌ | 199M/3.94G [00:01<00:16, 221MB/s] open_clip_pytorch_model.bin: 6%|▌ | 231M/3.94G [00:01<00:16, 224MB/s] open_clip_pytorch_model.bin: 7%|▋ | 262M/3.94G [00:01<00:15, 232MB/s] open_clip_pytorch_model.bin: 8%|▊ | 304M/3.94G [00:01<00:14, 251MB/s] open_clip_pytorch_model.bin: 9%|▊ | 336M/3.94G [00:01<00:14, 249MB/s] open_clip_pytorch_model.bin: 9%|▉ | 367M/3.94G [00:01<00:15, 237MB/s] open_clip_pytorch_model.bin: 10%|█ | 398M/3.94G [00:02<00:14, 239MB/s] open_clip_pytorch_model.bin: 11%|█ | 430M/3.94G [00:02<00:14, 244MB/s] open_clip_pytorch_model.bin: 12%|█▏ | 461M/3.94G [00:02<00:14, 240MB/s] open_clip_pytorch_model.bin: 12%|█▏ | 493M/3.94G [00:02<00:14, 244MB/s] open_clip_pytorch_model.bin: 13%|█▎ | 524M/3.94G [00:02<00:13, 247MB/s] open_clip_pytorch_model.bin: 14%|█▍ | 556M/3.94G [00:02<00:13, 246MB/s] open_clip_pytorch_model.bin: 15%|█▍ | 587M/3.94G [00:02<00:13, 252MB/s] open_clip_pytorch_model.bin: 16%|█▌ | 619M/3.94G [00:02<00:13, 249MB/s] open_clip_pytorch_model.bin: 16%|█▋ | 650M/3.94G [00:03<00:13, 249MB/s] open_clip_pytorch_model.bin: 17%|█▋ | 682M/3.94G [00:03<00:13, 247MB/s] open_clip_pytorch_model.bin: 18%|█▊ | 713M/3.94G [00:03<00:13, 248MB/s] open_clip_pytorch_model.bin: 19%|█▉ | 744M/3.94G [00:03<00:12, 247MB/s] open_clip_pytorch_model.bin: 20%|█▉ | 776M/3.94G [00:03<00:12, 244MB/s] open_clip_pytorch_model.bin: 20%|██ | 807M/3.94G [00:03<00:12, 245MB/s] open_clip_pytorch_model.bin: 21%|██▏ | 839M/3.94G [00:03<00:12, 241MB/s] open_clip_pytorch_model.bin: 22%|██▏ | 870M/3.94G [00:03<00:12, 243MB/s] open_clip_pytorch_model.bin: 23%|██▎ | 902M/3.94G [00:04<00:12, 247MB/s] open_clip_pytorch_model.bin: 24%|██▎ | 933M/3.94G [00:04<00:12, 248MB/s] open_clip_pytorch_model.bin: 24%|██▍ | 965M/3.94G [00:04<00:12, 247MB/s] open_clip_pytorch_model.bin: 25%|██▌ | 996M/3.94G [00:04<00:11, 251MB/s] open_clip_pytorch_model.bin: 26%|██▌ | 1.03G/3.94G [00:04<00:11, 251MB/s] open_clip_pytorch_model.bin: 27%|██▋ | 1.06G/3.94G [00:04<00:11, 251MB/s] open_clip_pytorch_model.bin: 28%|██▊ | 1.09G/3.94G [00:04<00:11, 242MB/s] open_clip_pytorch_model.bin: 28%|██▊ | 1.12G/3.94G [00:04<00:11, 238MB/s] open_clip_pytorch_model.bin: 29%|██▉ | 1.15G/3.94G [00:05<00:12, 226MB/s] open_clip_pytorch_model.bin: 30%|███ | 1.18G/3.94G [00:05<00:11, 233MB/s] open_clip_pytorch_model.bin: 31%|███ | 1.22G/3.94G [00:05<00:13, 210MB/s] open_clip_pytorch_model.bin: 32%|███▏ | 1.25G/3.94G [00:05<00:12, 213MB/s] open_clip_pytorch_model.bin: 32%|███▏ | 1.28G/3.94G [00:05<00:11, 223MB/s] open_clip_pytorch_model.bin: 33%|███▎ | 1.31G/3.94G [00:05<00:13, 197MB/s] open_clip_pytorch_model.bin: 34%|███▍ | 1.33G/3.94G [00:05<00:13, 198MB/s] open_clip_pytorch_model.bin: 35%|███▍ | 1.36G/3.94G [00:06<00:12, 209MB/s] open_clip_pytorch_model.bin: 35%|███▌ | 1.39G/3.94G [00:06<00:11, 216MB/s] open_clip_pytorch_model.bin: 36%|███▌ | 1.43G/3.94G [00:06<00:13, 193MB/s] open_clip_pytorch_model.bin: 37%|███▋ | 1.46G/3.94G [00:06<00:11, 208MB/s] open_clip_pytorch_model.bin: 38%|███▊ | 1.49G/3.94G [00:06<00:10, 228MB/s] open_clip_pytorch_model.bin: 39%|███▊ | 1.52G/3.94G [00:06<00:11, 217MB/s] open_clip_pytorch_model.bin: 39%|███▉ | 1.55G/3.94G [00:07<00:13, 174MB/s] open_clip_pytorch_model.bin: 40%|████ | 1.58G/3.94G [00:07<00:12, 186MB/s] open_clip_pytorch_model.bin: 41%|████ | 1.61G/3.94G [00:07<00:11, 196MB/s] open_clip_pytorch_model.bin: 42%|████▏ | 1.65G/3.94G [00:07<00:11, 207MB/s] open_clip_pytorch_model.bin: 43%|████▎ | 1.68G/3.94G [00:07<00:10, 218MB/s] open_clip_pytorch_model.bin: 43%|████▎ | 1.71G/3.94G [00:07<00:09, 227MB/s] open_clip_pytorch_model.bin: 44%|████▍ | 1.74G/3.94G [00:07<00:09, 229MB/s] open_clip_pytorch_model.bin: 45%|████▍ | 1.77G/3.94G [00:08<00:09, 239MB/s] open_clip_pytorch_model.bin: 46%|████▌ | 1.80G/3.94G [00:08<00:08, 245MB/s] open_clip_pytorch_model.bin: 47%|████▋ | 1.84G/3.94G [00:08<00:08, 241MB/s] open_clip_pytorch_model.bin: 47%|████▋ | 1.87G/3.94G [00:08<00:08, 242MB/s] open_clip_pytorch_model.bin: 48%|████▊ | 1.90G/3.94G [00:08<00:08, 241MB/s] open_clip_pytorch_model.bin: 49%|████▉ | 1.93G/3.94G [00:08<00:08, 245MB/s] open_clip_pytorch_model.bin: 50%|████▉ | 1.96G/3.94G [00:08<00:08, 242MB/s] open_clip_pytorch_model.bin: 51%|█████ | 1.99G/3.94G [00:08<00:08, 241MB/s] open_clip_pytorch_model.bin: 51%|█████▏ | 2.02G/3.94G [00:09<00:08, 239MB/s] open_clip_pytorch_model.bin: 52%|█████▏ | 2.06G/3.94G [00:09<00:07, 242MB/s] open_clip_pytorch_model.bin: 53%|█████▎ | 2.09G/3.94G [00:09<00:07, 242MB/s] open_clip_pytorch_model.bin: 54%|█████▎ | 2.12G/3.94G [00:09<00:07, 235MB/s] open_clip_pytorch_model.bin: 54%|█████▍ | 2.15G/3.94G [00:09<00:07, 240MB/s] open_clip_pytorch_model.bin: 55%|█████▌ | 2.18G/3.94G [00:09<00:07, 245MB/s] open_clip_pytorch_model.bin: 56%|█████▌ | 2.21G/3.94G [00:09<00:07, 245MB/s] open_clip_pytorch_model.bin: 57%|█████▋ | 2.24G/3.94G [00:09<00:06, 247MB/s] open_clip_pytorch_model.bin: 58%|█████▊ | 2.28G/3.94G [00:10<00:06, 247MB/s] open_clip_pytorch_model.bin: 58%|█████▊ | 2.31G/3.94G [00:10<00:06, 248MB/s] open_clip_pytorch_model.bin: 59%|█████▉ | 2.34G/3.94G [00:10<00:06, 251MB/s] open_clip_pytorch_model.bin: 60%|██████ | 2.37G/3.94G [00:10<00:06, 248MB/s] open_clip_pytorch_model.bin: 61%|██████ | 2.40G/3.94G [00:10<00:05, 261MB/s] open_clip_pytorch_model.bin: 62%|██████▏ | 2.43G/3.94G [00:10<00:06, 242MB/s] open_clip_pytorch_model.bin: 62%|██████▏ | 2.46G/3.94G [00:10<00:06, 246MB/s] open_clip_pytorch_model.bin: 63%|██████▎ | 2.50G/3.94G [00:10<00:05, 250MB/s] open_clip_pytorch_model.bin: 64%|██████▍ | 2.53G/3.94G [00:11<00:05, 245MB/s] open_clip_pytorch_model.bin: 65%|██████▍ | 2.56G/3.94G [00:11<00:09, 151MB/s] open_clip_pytorch_model.bin: 66%|██████▌ | 2.59G/3.94G [00:11<00:07, 170MB/s] open_clip_pytorch_model.bin: 66%|██████▋ | 2.62G/3.94G [00:11<00:07, 184MB/s] open_clip_pytorch_model.bin: 67%|██████▋ | 2.65G/3.94G [00:11<00:07, 182MB/s] open_clip_pytorch_model.bin: 68%|██████▊ | 2.68G/3.94G [00:12<00:06, 192MB/s] open_clip_pytorch_model.bin: 69%|██████▉ | 2.72G/3.94G [00:12<00:05, 206MB/s] open_clip_pytorch_model.bin: 70%|██████▉ | 2.75G/3.94G [00:12<00:06, 191MB/s] open_clip_pytorch_model.bin: 70%|███████ | 2.77G/3.94G [00:12<00:06, 192MB/s] open_clip_pytorch_model.bin: 71%|███████ | 2.79G/3.94G [00:12<00:05, 195MB/s] open_clip_pytorch_model.bin: 72%|███████▏ | 2.82G/3.94G [00:12<00:05, 210MB/s] open_clip_pytorch_model.bin: 72%|███████▏ | 2.85G/3.94G [00:12<00:05, 216MB/s] open_clip_pytorch_model.bin: 73%|███████▎ | 2.88G/3.94G [00:13<00:04, 227MB/s] open_clip_pytorch_model.bin: 74%|███████▍ | 2.92G/3.94G [00:13<00:04, 237MB/s] open_clip_pytorch_model.bin: 75%|███████▍ | 2.95G/3.94G [00:13<00:04, 246MB/s] open_clip_pytorch_model.bin: 75%|███████▌ | 2.98G/3.94G [00:13<00:04, 229MB/s] open_clip_pytorch_model.bin: 76%|███████▋ | 3.01G/3.94G [00:13<00:04, 232MB/s] open_clip_pytorch_model.bin: 77%|███████▋ | 3.04G/3.94G [00:13<00:03, 236MB/s] open_clip_pytorch_model.bin: 78%|███████▊ | 3.07G/3.94G [00:13<00:03, 238MB/s] open_clip_pytorch_model.bin: 79%|███████▊ | 3.10G/3.94G [00:13<00:03, 226MB/s] open_clip_pytorch_model.bin: 79%|███████▉ | 3.14G/3.94G [00:14<00:03, 228MB/s] open_clip_pytorch_model.bin: 80%|████████ | 3.17G/3.94G [00:14<00:03, 236MB/s] open_clip_pytorch_model.bin: 81%|████████ | 3.20G/3.94G [00:14<00:03, 237MB/s] open_clip_pytorch_model.bin: 82%|████████▏ | 3.23G/3.94G [00:14<00:03, 236MB/s] open_clip_pytorch_model.bin: 83%|████████▎ | 3.26G/3.94G [00:14<00:02, 240MB/s] open_clip_pytorch_model.bin: 83%|████████▎ | 3.29G/3.94G [00:14<00:02, 236MB/s] open_clip_pytorch_model.bin: 84%|████████▍ | 3.32G/3.94G [00:14<00:02, 235MB/s] open_clip_pytorch_model.bin: 85%|████████▌ | 3.36G/3.94G [00:15<00:02, 238MB/s] open_clip_pytorch_model.bin: 86%|████████▌ | 3.39G/3.94G [00:15<00:02, 236MB/s] open_clip_pytorch_model.bin: 87%|████████▋ | 3.42G/3.94G [00:15<00:02, 241MB/s] open_clip_pytorch_model.bin: 87%|████████▋ | 3.45G/3.94G [00:15<00:02, 215MB/s] open_clip_pytorch_model.bin: 88%|████████▊ | 3.48G/3.94G [00:15<00:02, 186MB/s] open_clip_pytorch_model.bin: 89%|████████▉ | 3.51G/3.94G [00:15<00:02, 192MB/s] open_clip_pytorch_model.bin: 90%|████████▉ | 3.54G/3.94G [00:15<00:01, 205MB/s] open_clip_pytorch_model.bin: 91%|█████████ | 3.58G/3.94G [00:16<00:01, 221MB/s] open_clip_pytorch_model.bin: 91%|█████████▏| 3.61G/3.94G [00:16<00:01, 222MB/s] open_clip_pytorch_model.bin: 92%|█████████▏| 3.64G/3.94G [00:16<00:01, 229MB/s] open_clip_pytorch_model.bin: 93%|█████████▎| 3.67G/3.94G [00:16<00:01, 223MB/s] open_clip_pytorch_model.bin: 94%|█████████▍| 3.70G/3.94G [00:16<00:01, 230MB/s] open_clip_pytorch_model.bin: 95%|█████████▍| 3.73G/3.94G [00:16<00:00, 227MB/s] open_clip_pytorch_model.bin: 95%|█████████▌| 3.76G/3.94G [00:16<00:00, 220MB/s] open_clip_pytorch_model.bin: 96%|█████████▌| 3.80G/3.94G [00:17<00:00, 199MB/s] open_clip_pytorch_model.bin: 97%|█████████▋| 3.82G/3.94G [00:17<00:00, 157MB/s] open_clip_pytorch_model.bin: 97%|█████████▋| 3.84G/3.94G [00:17<00:00, 147MB/s] open_clip_pytorch_model.bin: 98%|█████████▊| 3.87G/3.94G [00:17<00:00, 167MB/s] open_clip_pytorch_model.bin: 99%|█████████▊| 3.89G/3.94G [00:17<00:00, 164MB/s] open_clip_pytorch_model.bin: 99%|█████████▉| 3.91G/3.94G [00:17<00:00, 151MB/s] open_clip_pytorch_model.bin: 100%|█████████▉| 3.93G/3.94G [00:18<00:00, 162MB/s] open_clip_pytorch_model.bin: 100%|██████████| 3.94G/3.94G [00:18<00:00, 218MB/s] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) loaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Using seed: 60190 Global seed set to 60190 timesteps used in spaced sampler: [0, 23, 45, 68, 91, 114, 136, 159, 182, 204, 227, 250, 272, 295, 318, 341, 363, 386, 409, 431, 454, 477, 499, 522, 545, 568, 590, 613, 636, 658, 681, 704, 727, 749, 772, 795, 817, 840, 863, 885, 908, 931, 954, 976, 999] Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]/src/model/q_sampler.py:467: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). tao_index = torch.tensor(torch.round(index * t_max), dtype=torch.int64) Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s] Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s] Spaced Sampler: 2%|▏ | 1/45 [00:00<00:08, 5.21it/s] Spaced Sampler: 4%|▍ | 2/45 [00:00<00:08, 5.23it/s] Spaced Sampler: 7%|▋ | 3/45 [00:00<00:08, 5.23it/s] Spaced Sampler: 9%|▉ | 4/45 [00:00<00:07, 5.23it/s] Spaced Sampler: 11%|█ | 5/45 [00:00<00:07, 5.23it/s] Spaced Sampler: 13%|█▎ | 6/45 [00:01<00:07, 5.22it/s] Spaced Sampler: 16%|█▌ | 7/45 [00:01<00:07, 5.22it/s] Spaced Sampler: 18%|█▊ | 8/45 [00:01<00:07, 5.22it/s] Spaced Sampler: 20%|██ | 9/45 [00:01<00:06, 5.21it/s] Spaced Sampler: 22%|██▏ | 10/45 [00:01<00:06, 5.22it/s] Spaced Sampler: 24%|██▍ | 11/45 [00:02<00:06, 5.22it/s] Spaced Sampler: 27%|██▋ | 12/45 [00:02<00:06, 5.22it/s] Spaced Sampler: 29%|██▉ | 13/45 [00:02<00:06, 5.22it/s] Spaced Sampler: 31%|███ | 14/45 [00:02<00:05, 5.22it/s] Spaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s] Spaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s]
Prediction
csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947ModelIDlajmtw3b3gcoqyfneou4qx2axqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- steps
- 45
- t_max
- 0.6667
- t_min
- 0.3333
- sr_scale
- 4
- tile_vae
- color_fix_type
- adain
- tile_diffusion
- tile_diffusion_size
- 512
- tile_diffusion_stride
- 256
- vae_decoder_tile_size
- 224
- vae_encoder_tile_size
- 1024
{ "image": "https://replicate.delivery/pbxt/KF4EV8ueusmWq7Dwfr5nuqQZYpVaYDN6CSBgYG4ZDXTrUbY6/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", { input: { image: "https://replicate.delivery/pbxt/KF4EV8ueusmWq7Dwfr5nuqQZYpVaYDN6CSBgYG4ZDXTrUbY6/19.jpg", steps: 45, t_max: 0.6667, t_min: 0.3333, sr_scale: 4, tile_vae: false, color_fix_type: "adain", tile_diffusion: false, tile_diffusion_size: 512, tile_diffusion_stride: 256, vae_decoder_tile_size: 224, vae_encoder_tile_size: 1024 } } ); // To access the file URL: console.log(output.url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", input={ "image": "https://replicate.delivery/pbxt/KF4EV8ueusmWq7Dwfr5nuqQZYpVaYDN6CSBgYG4ZDXTrUbY6/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": False, "color_fix_type": "adain", "tile_diffusion": False, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run csslc/ccsr using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "csslc/ccsr:b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947", "input": { "image": "https://replicate.delivery/pbxt/KF4EV8ueusmWq7Dwfr5nuqQZYpVaYDN6CSBgYG4ZDXTrUbY6/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-01-17T13:04:17.487613Z", "created_at": "2024-01-17T13:01:01.694682Z", "data_removed": false, "error": null, "id": "lajmtw3b3gcoqyfneou4qx2axq", "input": { "image": "https://replicate.delivery/pbxt/KF4EV8ueusmWq7Dwfr5nuqQZYpVaYDN6CSBgYG4ZDXTrUbY6/19.jpg", "steps": 45, "t_max": 0.6667, "t_min": 0.3333, "sr_scale": 4, "tile_vae": false, "color_fix_type": "adain", "tile_diffusion": false, "tile_diffusion_size": 512, "tile_diffusion_stride": 256, "vae_decoder_tile_size": 224, "vae_encoder_tile_size": 1024 }, "logs": "ControlLDM: Running in eps-prediction mode\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nDiffusionWrapper has 865.91 M params.\nmaking attention of type 'vanilla-xformers' with 512 in_channels\nbuilding MemoryEfficientAttnBlock with 512 in_channels...\nWorking with z of shape (1, 4, 32, 32) = 4096 dimensions.\nmaking attention of type 'vanilla-xformers' with 512 in_channels\nbuilding MemoryEfficientAttnBlock with 512 in_channels...\nopen_clip_pytorch_model.bin: 0%| | 0.00/3.94G [00:00<?, ?B/s]\nopen_clip_pytorch_model.bin: 0%| | 10.5M/3.94G [00:00<02:38, 24.8MB/s]\nopen_clip_pytorch_model.bin: 1%| | 31.5M/3.94G [00:00<00:54, 71.3MB/s]\nopen_clip_pytorch_model.bin: 2%|▏ | 62.9M/3.94G [00:00<00:34, 112MB/s] \nopen_clip_pytorch_model.bin: 2%|▏ | 94.4M/3.94G [00:00<00:27, 139MB/s]\nopen_clip_pytorch_model.bin: 3%|▎ | 115M/3.94G [00:00<00:25, 152MB/s] \nopen_clip_pytorch_model.bin: 4%|▎ | 147M/3.94G [00:01<00:20, 188MB/s]\nopen_clip_pytorch_model.bin: 5%|▍ | 178M/3.94G [00:01<00:19, 191MB/s]\nopen_clip_pytorch_model.bin: 5%|▌ | 210M/3.94G [00:01<00:17, 211MB/s]\nopen_clip_pytorch_model.bin: 6%|▌ | 241M/3.94G [00:01<00:16, 227MB/s]\nopen_clip_pytorch_model.bin: 7%|▋ | 273M/3.94G [00:01<00:16, 217MB/s]\nopen_clip_pytorch_model.bin: 8%|▊ | 304M/3.94G [00:01<00:17, 208MB/s]\nopen_clip_pytorch_model.bin: 9%|▊ | 336M/3.94G [00:01<00:15, 227MB/s]\nopen_clip_pytorch_model.bin: 9%|▉ | 367M/3.94G [00:02<00:16, 215MB/s]\nopen_clip_pytorch_model.bin: 10%|█ | 398M/3.94G [00:02<00:16, 210MB/s]\nopen_clip_pytorch_model.bin: 11%|█ | 430M/3.94G [00:02<00:17, 204MB/s]\nopen_clip_pytorch_model.bin: 12%|█▏ | 461M/3.94G [00:02<00:15, 223MB/s]\nopen_clip_pytorch_model.bin: 12%|█▏ | 493M/3.94G [00:02<00:16, 210MB/s]\nopen_clip_pytorch_model.bin: 13%|█▎ | 524M/3.94G [00:02<00:15, 224MB/s]\nopen_clip_pytorch_model.bin: 14%|█▍ | 556M/3.94G [00:02<00:14, 230MB/s]\nopen_clip_pytorch_model.bin: 15%|█▍ | 587M/3.94G [00:03<00:15, 222MB/s]\nopen_clip_pytorch_model.bin: 16%|█▌ | 619M/3.94G [00:03<00:15, 213MB/s]\nopen_clip_pytorch_model.bin: 16%|█▋ | 650M/3.94G [00:03<00:14, 223MB/s]\nopen_clip_pytorch_model.bin: 17%|█▋ | 682M/3.94G [00:03<00:13, 236MB/s]\nopen_clip_pytorch_model.bin: 18%|█▊ | 713M/3.94G [00:03<00:13, 238MB/s]\nopen_clip_pytorch_model.bin: 19%|█▉ | 744M/3.94G [00:03<00:14, 228MB/s]\nopen_clip_pytorch_model.bin: 20%|█▉ | 776M/3.94G [00:03<00:13, 240MB/s]\nopen_clip_pytorch_model.bin: 20%|██ | 807M/3.94G [00:03<00:12, 249MB/s]\nopen_clip_pytorch_model.bin: 21%|██▏ | 839M/3.94G [00:04<00:12, 257MB/s]\nopen_clip_pytorch_model.bin: 22%|██▏ | 870M/3.94G [00:04<00:11, 262MB/s]\nopen_clip_pytorch_model.bin: 23%|██▎ | 902M/3.94G [00:04<00:11, 263MB/s]\nopen_clip_pytorch_model.bin: 24%|██▎ | 933M/3.94G [00:04<00:12, 233MB/s]\nopen_clip_pytorch_model.bin: 24%|██▍ | 965M/3.94G [00:04<00:12, 242MB/s]\nopen_clip_pytorch_model.bin: 25%|██▌ | 996M/3.94G [00:04<00:11, 251MB/s]\nopen_clip_pytorch_model.bin: 26%|██▌ | 1.03G/3.94G [00:04<00:11, 258MB/s]\nopen_clip_pytorch_model.bin: 27%|██▋ | 1.06G/3.94G [00:05<00:12, 229MB/s]\nopen_clip_pytorch_model.bin: 28%|██▊ | 1.09G/3.94G [00:05<00:11, 245MB/s]\nopen_clip_pytorch_model.bin: 28%|██▊ | 1.12G/3.94G [00:05<00:11, 254MB/s]\nopen_clip_pytorch_model.bin: 29%|██▉ | 1.15G/3.94G [00:05<00:10, 258MB/s]\nopen_clip_pytorch_model.bin: 30%|███ | 1.18G/3.94G [00:05<00:10, 255MB/s]\nopen_clip_pytorch_model.bin: 31%|███ | 1.22G/3.94G [00:05<00:11, 236MB/s]\nopen_clip_pytorch_model.bin: 32%|███▏ | 1.25G/3.94G [00:05<00:11, 226MB/s]\nopen_clip_pytorch_model.bin: 32%|███▏ | 1.28G/3.94G [00:05<00:11, 232MB/s]\nopen_clip_pytorch_model.bin: 33%|███▎ | 1.31G/3.94G [00:06<00:10, 246MB/s]\nopen_clip_pytorch_model.bin: 34%|███▍ | 1.34G/3.94G [00:06<00:10, 254MB/s]\nopen_clip_pytorch_model.bin: 35%|███▍ | 1.37G/3.94G [00:06<00:09, 261MB/s]\nopen_clip_pytorch_model.bin: 36%|███▌ | 1.41G/3.94G [00:06<00:09, 267MB/s]\nopen_clip_pytorch_model.bin: 36%|███▋ | 1.44G/3.94G [00:06<00:09, 263MB/s]\nopen_clip_pytorch_model.bin: 37%|███▋ | 1.47G/3.94G [00:06<00:09, 248MB/s]\nopen_clip_pytorch_model.bin: 38%|███▊ | 1.50G/3.94G [00:06<00:09, 250MB/s]\nopen_clip_pytorch_model.bin: 39%|███▉ | 1.54G/3.94G [00:06<00:08, 270MB/s]\nopen_clip_pytorch_model.bin: 40%|███▉ | 1.57G/3.94G [00:07<00:08, 270MB/s]\nopen_clip_pytorch_model.bin: 41%|████ | 1.60G/3.94G [00:07<00:08, 269MB/s]\nopen_clip_pytorch_model.bin: 41%|████▏ | 1.64G/3.94G [00:07<00:09, 245MB/s]\nopen_clip_pytorch_model.bin: 42%|████▏ | 1.67G/3.94G [00:07<00:11, 207MB/s]\nopen_clip_pytorch_model.bin: 43%|████▎ | 1.70G/3.94G [00:07<00:10, 217MB/s]\nopen_clip_pytorch_model.bin: 44%|████▍ | 1.73G/3.94G [00:07<00:09, 230MB/s]\nopen_clip_pytorch_model.bin: 45%|████▍ | 1.76G/3.94G [00:07<00:10, 200MB/s]\nopen_clip_pytorch_model.bin: 45%|████▌ | 1.79G/3.94G [00:08<00:09, 221MB/s]\nopen_clip_pytorch_model.bin: 46%|████▋ | 1.82G/3.94G [00:08<00:10, 211MB/s]\nopen_clip_pytorch_model.bin: 47%|████▋ | 1.86G/3.94G [00:08<00:09, 221MB/s]\nopen_clip_pytorch_model.bin: 48%|████▊ | 1.89G/3.94G [00:08<00:08, 237MB/s]\nopen_clip_pytorch_model.bin: 49%|████▊ | 1.92G/3.94G [00:08<00:08, 244MB/s]\nopen_clip_pytorch_model.bin: 49%|████▉ | 1.95G/3.94G [00:08<00:08, 245MB/s]\nopen_clip_pytorch_model.bin: 50%|█████ | 1.98G/3.94G [00:08<00:07, 255MB/s]\nopen_clip_pytorch_model.bin: 51%|█████ | 2.01G/3.94G [00:08<00:08, 233MB/s]\nopen_clip_pytorch_model.bin: 52%|█████▏ | 2.04G/3.94G [00:09<00:07, 242MB/s]\nopen_clip_pytorch_model.bin: 53%|█████▎ | 2.08G/3.94G [00:09<00:08, 227MB/s]\nopen_clip_pytorch_model.bin: 53%|█████▎ | 2.11G/3.94G [00:09<00:08, 216MB/s]\nopen_clip_pytorch_model.bin: 54%|█████▍ | 2.14G/3.94G [00:09<00:08, 212MB/s]\nopen_clip_pytorch_model.bin: 55%|█████▌ | 2.17G/3.94G [00:09<00:08, 201MB/s]\nopen_clip_pytorch_model.bin: 56%|█████▌ | 2.20G/3.94G [00:09<00:07, 219MB/s]\nopen_clip_pytorch_model.bin: 57%|█████▋ | 2.23G/3.94G [00:10<00:08, 212MB/s]\nopen_clip_pytorch_model.bin: 57%|█████▋ | 2.26G/3.94G [00:10<00:08, 206MB/s]\nopen_clip_pytorch_model.bin: 58%|█████▊ | 2.30G/3.94G [00:10<00:08, 188MB/s]\nopen_clip_pytorch_model.bin: 59%|█████▉ | 2.33G/3.94G [00:10<00:07, 203MB/s]\nopen_clip_pytorch_model.bin: 60%|█████▉ | 2.36G/3.94G [00:10<00:07, 216MB/s]\nopen_clip_pytorch_model.bin: 61%|██████ | 2.39G/3.94G [00:10<00:07, 213MB/s]\nopen_clip_pytorch_model.bin: 61%|██████▏ | 2.42G/3.94G [00:10<00:06, 222MB/s]\nopen_clip_pytorch_model.bin: 62%|██████▏ | 2.45G/3.94G [00:11<00:06, 217MB/s]\nopen_clip_pytorch_model.bin: 63%|██████▎ | 2.49G/3.94G [00:11<00:06, 234MB/s]\nopen_clip_pytorch_model.bin: 64%|██████▍ | 2.52G/3.94G [00:11<00:06, 237MB/s]\nopen_clip_pytorch_model.bin: 65%|██████▍ | 2.55G/3.94G [00:11<00:06, 224MB/s]\nopen_clip_pytorch_model.bin: 65%|██████▌ | 2.58G/3.94G [00:11<00:06, 216MB/s]\nopen_clip_pytorch_model.bin: 66%|██████▌ | 2.61G/3.94G [00:11<00:05, 224MB/s]\nopen_clip_pytorch_model.bin: 67%|██████▋ | 2.64G/3.94G [00:11<00:05, 225MB/s]\nopen_clip_pytorch_model.bin: 68%|██████▊ | 2.67G/3.94G [00:12<00:05, 234MB/s]\nopen_clip_pytorch_model.bin: 69%|██████▊ | 2.71G/3.94G [00:12<00:05, 238MB/s]\nopen_clip_pytorch_model.bin: 69%|██████▉ | 2.74G/3.94G [00:12<00:05, 241MB/s]\nopen_clip_pytorch_model.bin: 70%|███████ | 2.77G/3.94G [00:12<00:04, 245MB/s]\nopen_clip_pytorch_model.bin: 71%|███████ | 2.80G/3.94G [00:12<00:04, 247MB/s]\nopen_clip_pytorch_model.bin: 72%|███████▏ | 2.83G/3.94G [00:12<00:04, 248MB/s]\nopen_clip_pytorch_model.bin: 73%|███████▎ | 2.86G/3.94G [00:13<00:07, 147MB/s]\nopen_clip_pytorch_model.bin: 73%|███████▎ | 2.89G/3.94G [00:13<00:06, 167MB/s]\nopen_clip_pytorch_model.bin: 74%|███████▍ | 2.93G/3.94G [00:13<00:05, 186MB/s]\nopen_clip_pytorch_model.bin: 75%|███████▍ | 2.96G/3.94G [00:13<00:04, 206MB/s]\nopen_clip_pytorch_model.bin: 76%|███████▌ | 2.99G/3.94G [00:13<00:04, 218MB/s]\nopen_clip_pytorch_model.bin: 77%|███████▋ | 3.02G/3.94G [00:13<00:04, 228MB/s]\nopen_clip_pytorch_model.bin: 77%|███████▋ | 3.05G/3.94G [00:13<00:03, 234MB/s]\nopen_clip_pytorch_model.bin: 78%|███████▊ | 3.08G/3.94G [00:13<00:03, 240MB/s]\nopen_clip_pytorch_model.bin: 79%|███████▉ | 3.11G/3.94G [00:14<00:03, 230MB/s]\nopen_clip_pytorch_model.bin: 80%|███████▉ | 3.15G/3.94G [00:14<00:03, 237MB/s]\nopen_clip_pytorch_model.bin: 81%|████████ | 3.18G/3.94G [00:14<00:03, 250MB/s]\nopen_clip_pytorch_model.bin: 81%|████████▏ | 3.21G/3.94G [00:14<00:02, 252MB/s]\nopen_clip_pytorch_model.bin: 82%|████████▏ | 3.24G/3.94G [00:14<00:02, 250MB/s]\nopen_clip_pytorch_model.bin: 83%|████████▎ | 3.27G/3.94G [00:14<00:02, 250MB/s]\nopen_clip_pytorch_model.bin: 84%|████████▎ | 3.30G/3.94G [00:14<00:02, 249MB/s]\nopen_clip_pytorch_model.bin: 85%|████████▍ | 3.33G/3.94G [00:14<00:02, 248MB/s]\nopen_clip_pytorch_model.bin: 85%|████████▌ | 3.37G/3.94G [00:15<00:02, 249MB/s]\nopen_clip_pytorch_model.bin: 86%|████████▌ | 3.40G/3.94G [00:15<00:02, 251MB/s]\nopen_clip_pytorch_model.bin: 87%|████████▋ | 3.43G/3.94G [00:15<00:02, 251MB/s]\nopen_clip_pytorch_model.bin: 88%|████████▊ | 3.46G/3.94G [00:15<00:01, 252MB/s]\nopen_clip_pytorch_model.bin: 89%|████████▊ | 3.49G/3.94G [00:15<00:01, 253MB/s]\nopen_clip_pytorch_model.bin: 89%|████████▉ | 3.52G/3.94G [00:15<00:01, 253MB/s]\nopen_clip_pytorch_model.bin: 90%|█████████ | 3.55G/3.94G [00:15<00:01, 251MB/s]\nopen_clip_pytorch_model.bin: 91%|█████████ | 3.59G/3.94G [00:15<00:01, 249MB/s]\nopen_clip_pytorch_model.bin: 92%|█████████▏| 3.62G/3.94G [00:16<00:01, 249MB/s]\nopen_clip_pytorch_model.bin: 93%|█████████▎| 3.65G/3.94G [00:16<00:01, 250MB/s]\nopen_clip_pytorch_model.bin: 93%|█████████▎| 3.68G/3.94G [00:16<00:01, 251MB/s]\nopen_clip_pytorch_model.bin: 94%|█████████▍| 3.71G/3.94G [00:16<00:00, 254MB/s]\nopen_clip_pytorch_model.bin: 95%|█████████▍| 3.74G/3.94G [00:16<00:00, 251MB/s]\nopen_clip_pytorch_model.bin: 96%|█████████▌| 3.77G/3.94G [00:16<00:00, 240MB/s]\nopen_clip_pytorch_model.bin: 96%|█████████▋| 3.81G/3.94G [00:16<00:00, 256MB/s]\nopen_clip_pytorch_model.bin: 97%|█████████▋| 3.84G/3.94G [00:16<00:00, 256MB/s]\nopen_clip_pytorch_model.bin: 98%|█████████▊| 3.87G/3.94G [00:17<00:00, 240MB/s]\nopen_clip_pytorch_model.bin: 99%|█████████▉| 3.90G/3.94G [00:17<00:00, 242MB/s]\nopen_clip_pytorch_model.bin: 100%|█████████▉| 3.93G/3.94G [00:17<00:00, 245MB/s]\nopen_clip_pytorch_model.bin: 100%|██████████| 3.94G/3.94G [00:17<00:00, 227MB/s]\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\nwarnings.warn(\n/root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights.\nwarnings.warn(msg)\nloaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads.\nSetting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads.\nUsing seed: 42309\nGlobal seed set to 42309\ntimesteps used in spaced sampler:\n[0, 23, 45, 68, 91, 114, 136, 159, 182, 204, 227, 250, 272, 295, 318, 341, 363, 386, 409, 431, 454, 477, 499, 522, 545, 568, 590, 613, 636, 658, 681, 704, 727, 749, 772, 795, 817, 840, 863, 885, 908, 931, 954, 976, 999]\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]/src/model/q_sampler.py:467: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).\ntao_index = torch.tensor(torch.round(index * t_max), dtype=torch.int64)\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]\u001b[A\nSpaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]\nSpaced Sampler: 2%|▏ | 1/45 [00:00<00:08, 5.19it/s]\u001b[A\nSpaced Sampler: 4%|▍ | 2/45 [00:00<00:08, 5.21it/s]\u001b[A\nSpaced Sampler: 7%|▋ | 3/45 [00:00<00:08, 5.22it/s]\u001b[A\nSpaced Sampler: 9%|▉ | 4/45 [00:00<00:07, 5.23it/s]\u001b[A\nSpaced Sampler: 11%|█ | 5/45 [00:00<00:07, 5.23it/s]\u001b[A\nSpaced Sampler: 13%|█▎ | 6/45 [00:01<00:07, 5.23it/s]\u001b[A\nSpaced Sampler: 16%|█▌ | 7/45 [00:01<00:07, 5.23it/s]\u001b[A\nSpaced Sampler: 18%|█▊ | 8/45 [00:01<00:07, 5.23it/s]\u001b[A\nSpaced Sampler: 20%|██ | 9/45 [00:01<00:06, 5.22it/s]\u001b[A\nSpaced Sampler: 22%|██▏ | 10/45 [00:01<00:06, 5.22it/s]\u001b[A\nSpaced Sampler: 24%|██▍ | 11/45 [00:02<00:06, 5.23it/s]\u001b[A\nSpaced Sampler: 27%|██▋ | 12/45 [00:02<00:06, 5.22it/s]\u001b[A\nSpaced Sampler: 29%|██▉ | 13/45 [00:02<00:06, 5.23it/s]\u001b[A\nSpaced Sampler: 31%|███ | 14/45 [00:02<00:05, 5.22it/s]\u001b[A\nSpaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s]\u001b[A\nSpaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s]", "metrics": { "predict_time": 45.431014, "total_time": 195.792931 }, "output": "https://replicate.delivery/pbxt/8vl8v13MB5L7KdOlO6Rz2oqAES7xtB9EQIJpHDirZaJUCWjE/out.png", "started_at": "2024-01-17T13:03:32.056599Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/lajmtw3b3gcoqyfneou4qx2axq", "cancel": "https://api.replicate.com/v1/predictions/lajmtw3b3gcoqyfneou4qx2axq/cancel" }, "version": "b66be6a6d779e57163b0489329f50ea4b56bcbcc7b3d48ef39bae6b812a7f947" }
Generated inControlLDM: Running in eps-prediction mode Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. DiffusionWrapper has 865.91 M params. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... Working with z of shape (1, 4, 32, 32) = 4096 dimensions. making attention of type 'vanilla-xformers' with 512 in_channels building MemoryEfficientAttnBlock with 512 in_channels... open_clip_pytorch_model.bin: 0%| | 0.00/3.94G [00:00<?, ?B/s] open_clip_pytorch_model.bin: 0%| | 10.5M/3.94G [00:00<02:38, 24.8MB/s] open_clip_pytorch_model.bin: 1%| | 31.5M/3.94G [00:00<00:54, 71.3MB/s] open_clip_pytorch_model.bin: 2%|▏ | 62.9M/3.94G [00:00<00:34, 112MB/s] open_clip_pytorch_model.bin: 2%|▏ | 94.4M/3.94G [00:00<00:27, 139MB/s] open_clip_pytorch_model.bin: 3%|▎ | 115M/3.94G [00:00<00:25, 152MB/s] open_clip_pytorch_model.bin: 4%|▎ | 147M/3.94G [00:01<00:20, 188MB/s] open_clip_pytorch_model.bin: 5%|▍ | 178M/3.94G [00:01<00:19, 191MB/s] open_clip_pytorch_model.bin: 5%|▌ | 210M/3.94G [00:01<00:17, 211MB/s] open_clip_pytorch_model.bin: 6%|▌ | 241M/3.94G [00:01<00:16, 227MB/s] open_clip_pytorch_model.bin: 7%|▋ | 273M/3.94G [00:01<00:16, 217MB/s] open_clip_pytorch_model.bin: 8%|▊ | 304M/3.94G [00:01<00:17, 208MB/s] open_clip_pytorch_model.bin: 9%|▊ | 336M/3.94G [00:01<00:15, 227MB/s] open_clip_pytorch_model.bin: 9%|▉ | 367M/3.94G [00:02<00:16, 215MB/s] open_clip_pytorch_model.bin: 10%|█ | 398M/3.94G [00:02<00:16, 210MB/s] open_clip_pytorch_model.bin: 11%|█ | 430M/3.94G [00:02<00:17, 204MB/s] open_clip_pytorch_model.bin: 12%|█▏ | 461M/3.94G [00:02<00:15, 223MB/s] open_clip_pytorch_model.bin: 12%|█▏ | 493M/3.94G [00:02<00:16, 210MB/s] open_clip_pytorch_model.bin: 13%|█▎ | 524M/3.94G [00:02<00:15, 224MB/s] open_clip_pytorch_model.bin: 14%|█▍ | 556M/3.94G [00:02<00:14, 230MB/s] open_clip_pytorch_model.bin: 15%|█▍ | 587M/3.94G [00:03<00:15, 222MB/s] open_clip_pytorch_model.bin: 16%|█▌ | 619M/3.94G [00:03<00:15, 213MB/s] open_clip_pytorch_model.bin: 16%|█▋ | 650M/3.94G [00:03<00:14, 223MB/s] open_clip_pytorch_model.bin: 17%|█▋ | 682M/3.94G [00:03<00:13, 236MB/s] open_clip_pytorch_model.bin: 18%|█▊ | 713M/3.94G [00:03<00:13, 238MB/s] open_clip_pytorch_model.bin: 19%|█▉ | 744M/3.94G [00:03<00:14, 228MB/s] open_clip_pytorch_model.bin: 20%|█▉ | 776M/3.94G [00:03<00:13, 240MB/s] open_clip_pytorch_model.bin: 20%|██ | 807M/3.94G [00:03<00:12, 249MB/s] open_clip_pytorch_model.bin: 21%|██▏ | 839M/3.94G [00:04<00:12, 257MB/s] open_clip_pytorch_model.bin: 22%|██▏ | 870M/3.94G [00:04<00:11, 262MB/s] open_clip_pytorch_model.bin: 23%|██▎ | 902M/3.94G [00:04<00:11, 263MB/s] open_clip_pytorch_model.bin: 24%|██▎ | 933M/3.94G [00:04<00:12, 233MB/s] open_clip_pytorch_model.bin: 24%|██▍ | 965M/3.94G [00:04<00:12, 242MB/s] open_clip_pytorch_model.bin: 25%|██▌ | 996M/3.94G [00:04<00:11, 251MB/s] open_clip_pytorch_model.bin: 26%|██▌ | 1.03G/3.94G [00:04<00:11, 258MB/s] open_clip_pytorch_model.bin: 27%|██▋ | 1.06G/3.94G [00:05<00:12, 229MB/s] open_clip_pytorch_model.bin: 28%|██▊ | 1.09G/3.94G [00:05<00:11, 245MB/s] open_clip_pytorch_model.bin: 28%|██▊ | 1.12G/3.94G [00:05<00:11, 254MB/s] open_clip_pytorch_model.bin: 29%|██▉ | 1.15G/3.94G [00:05<00:10, 258MB/s] open_clip_pytorch_model.bin: 30%|███ | 1.18G/3.94G [00:05<00:10, 255MB/s] open_clip_pytorch_model.bin: 31%|███ | 1.22G/3.94G [00:05<00:11, 236MB/s] open_clip_pytorch_model.bin: 32%|███▏ | 1.25G/3.94G [00:05<00:11, 226MB/s] open_clip_pytorch_model.bin: 32%|███▏ | 1.28G/3.94G [00:05<00:11, 232MB/s] open_clip_pytorch_model.bin: 33%|███▎ | 1.31G/3.94G [00:06<00:10, 246MB/s] open_clip_pytorch_model.bin: 34%|███▍ | 1.34G/3.94G [00:06<00:10, 254MB/s] open_clip_pytorch_model.bin: 35%|███▍ | 1.37G/3.94G [00:06<00:09, 261MB/s] open_clip_pytorch_model.bin: 36%|███▌ | 1.41G/3.94G [00:06<00:09, 267MB/s] open_clip_pytorch_model.bin: 36%|███▋ | 1.44G/3.94G [00:06<00:09, 263MB/s] open_clip_pytorch_model.bin: 37%|███▋ | 1.47G/3.94G [00:06<00:09, 248MB/s] open_clip_pytorch_model.bin: 38%|███▊ | 1.50G/3.94G [00:06<00:09, 250MB/s] open_clip_pytorch_model.bin: 39%|███▉ | 1.54G/3.94G [00:06<00:08, 270MB/s] open_clip_pytorch_model.bin: 40%|███▉ | 1.57G/3.94G [00:07<00:08, 270MB/s] open_clip_pytorch_model.bin: 41%|████ | 1.60G/3.94G [00:07<00:08, 269MB/s] open_clip_pytorch_model.bin: 41%|████▏ | 1.64G/3.94G [00:07<00:09, 245MB/s] open_clip_pytorch_model.bin: 42%|████▏ | 1.67G/3.94G [00:07<00:11, 207MB/s] open_clip_pytorch_model.bin: 43%|████▎ | 1.70G/3.94G [00:07<00:10, 217MB/s] open_clip_pytorch_model.bin: 44%|████▍ | 1.73G/3.94G [00:07<00:09, 230MB/s] open_clip_pytorch_model.bin: 45%|████▍ | 1.76G/3.94G [00:07<00:10, 200MB/s] open_clip_pytorch_model.bin: 45%|████▌ | 1.79G/3.94G [00:08<00:09, 221MB/s] open_clip_pytorch_model.bin: 46%|████▋ | 1.82G/3.94G [00:08<00:10, 211MB/s] open_clip_pytorch_model.bin: 47%|████▋ | 1.86G/3.94G [00:08<00:09, 221MB/s] open_clip_pytorch_model.bin: 48%|████▊ | 1.89G/3.94G [00:08<00:08, 237MB/s] open_clip_pytorch_model.bin: 49%|████▊ | 1.92G/3.94G [00:08<00:08, 244MB/s] open_clip_pytorch_model.bin: 49%|████▉ | 1.95G/3.94G [00:08<00:08, 245MB/s] open_clip_pytorch_model.bin: 50%|█████ | 1.98G/3.94G [00:08<00:07, 255MB/s] open_clip_pytorch_model.bin: 51%|█████ | 2.01G/3.94G [00:08<00:08, 233MB/s] open_clip_pytorch_model.bin: 52%|█████▏ | 2.04G/3.94G [00:09<00:07, 242MB/s] open_clip_pytorch_model.bin: 53%|█████▎ | 2.08G/3.94G [00:09<00:08, 227MB/s] open_clip_pytorch_model.bin: 53%|█████▎ | 2.11G/3.94G [00:09<00:08, 216MB/s] open_clip_pytorch_model.bin: 54%|█████▍ | 2.14G/3.94G [00:09<00:08, 212MB/s] open_clip_pytorch_model.bin: 55%|█████▌ | 2.17G/3.94G [00:09<00:08, 201MB/s] open_clip_pytorch_model.bin: 56%|█████▌ | 2.20G/3.94G [00:09<00:07, 219MB/s] open_clip_pytorch_model.bin: 57%|█████▋ | 2.23G/3.94G [00:10<00:08, 212MB/s] open_clip_pytorch_model.bin: 57%|█████▋ | 2.26G/3.94G [00:10<00:08, 206MB/s] open_clip_pytorch_model.bin: 58%|█████▊ | 2.30G/3.94G [00:10<00:08, 188MB/s] open_clip_pytorch_model.bin: 59%|█████▉ | 2.33G/3.94G [00:10<00:07, 203MB/s] open_clip_pytorch_model.bin: 60%|█████▉ | 2.36G/3.94G [00:10<00:07, 216MB/s] open_clip_pytorch_model.bin: 61%|██████ | 2.39G/3.94G [00:10<00:07, 213MB/s] open_clip_pytorch_model.bin: 61%|██████▏ | 2.42G/3.94G [00:10<00:06, 222MB/s] open_clip_pytorch_model.bin: 62%|██████▏ | 2.45G/3.94G [00:11<00:06, 217MB/s] open_clip_pytorch_model.bin: 63%|██████▎ | 2.49G/3.94G [00:11<00:06, 234MB/s] open_clip_pytorch_model.bin: 64%|██████▍ | 2.52G/3.94G [00:11<00:06, 237MB/s] open_clip_pytorch_model.bin: 65%|██████▍ | 2.55G/3.94G [00:11<00:06, 224MB/s] open_clip_pytorch_model.bin: 65%|██████▌ | 2.58G/3.94G [00:11<00:06, 216MB/s] open_clip_pytorch_model.bin: 66%|██████▌ | 2.61G/3.94G [00:11<00:05, 224MB/s] open_clip_pytorch_model.bin: 67%|██████▋ | 2.64G/3.94G [00:11<00:05, 225MB/s] open_clip_pytorch_model.bin: 68%|██████▊ | 2.67G/3.94G [00:12<00:05, 234MB/s] open_clip_pytorch_model.bin: 69%|██████▊ | 2.71G/3.94G [00:12<00:05, 238MB/s] open_clip_pytorch_model.bin: 69%|██████▉ | 2.74G/3.94G [00:12<00:05, 241MB/s] open_clip_pytorch_model.bin: 70%|███████ | 2.77G/3.94G [00:12<00:04, 245MB/s] open_clip_pytorch_model.bin: 71%|███████ | 2.80G/3.94G [00:12<00:04, 247MB/s] open_clip_pytorch_model.bin: 72%|███████▏ | 2.83G/3.94G [00:12<00:04, 248MB/s] open_clip_pytorch_model.bin: 73%|███████▎ | 2.86G/3.94G [00:13<00:07, 147MB/s] open_clip_pytorch_model.bin: 73%|███████▎ | 2.89G/3.94G [00:13<00:06, 167MB/s] open_clip_pytorch_model.bin: 74%|███████▍ | 2.93G/3.94G [00:13<00:05, 186MB/s] open_clip_pytorch_model.bin: 75%|███████▍ | 2.96G/3.94G [00:13<00:04, 206MB/s] open_clip_pytorch_model.bin: 76%|███████▌ | 2.99G/3.94G [00:13<00:04, 218MB/s] open_clip_pytorch_model.bin: 77%|███████▋ | 3.02G/3.94G [00:13<00:04, 228MB/s] open_clip_pytorch_model.bin: 77%|███████▋ | 3.05G/3.94G [00:13<00:03, 234MB/s] open_clip_pytorch_model.bin: 78%|███████▊ | 3.08G/3.94G [00:13<00:03, 240MB/s] open_clip_pytorch_model.bin: 79%|███████▉ | 3.11G/3.94G [00:14<00:03, 230MB/s] open_clip_pytorch_model.bin: 80%|███████▉ | 3.15G/3.94G [00:14<00:03, 237MB/s] open_clip_pytorch_model.bin: 81%|████████ | 3.18G/3.94G [00:14<00:03, 250MB/s] open_clip_pytorch_model.bin: 81%|████████▏ | 3.21G/3.94G [00:14<00:02, 252MB/s] open_clip_pytorch_model.bin: 82%|████████▏ | 3.24G/3.94G [00:14<00:02, 250MB/s] open_clip_pytorch_model.bin: 83%|████████▎ | 3.27G/3.94G [00:14<00:02, 250MB/s] open_clip_pytorch_model.bin: 84%|████████▎ | 3.30G/3.94G [00:14<00:02, 249MB/s] open_clip_pytorch_model.bin: 85%|████████▍ | 3.33G/3.94G [00:14<00:02, 248MB/s] open_clip_pytorch_model.bin: 85%|████████▌ | 3.37G/3.94G [00:15<00:02, 249MB/s] open_clip_pytorch_model.bin: 86%|████████▌ | 3.40G/3.94G [00:15<00:02, 251MB/s] open_clip_pytorch_model.bin: 87%|████████▋ | 3.43G/3.94G [00:15<00:02, 251MB/s] open_clip_pytorch_model.bin: 88%|████████▊ | 3.46G/3.94G [00:15<00:01, 252MB/s] open_clip_pytorch_model.bin: 89%|████████▊ | 3.49G/3.94G [00:15<00:01, 253MB/s] open_clip_pytorch_model.bin: 89%|████████▉ | 3.52G/3.94G [00:15<00:01, 253MB/s] open_clip_pytorch_model.bin: 90%|█████████ | 3.55G/3.94G [00:15<00:01, 251MB/s] open_clip_pytorch_model.bin: 91%|█████████ | 3.59G/3.94G [00:15<00:01, 249MB/s] open_clip_pytorch_model.bin: 92%|█████████▏| 3.62G/3.94G [00:16<00:01, 249MB/s] open_clip_pytorch_model.bin: 93%|█████████▎| 3.65G/3.94G [00:16<00:01, 250MB/s] open_clip_pytorch_model.bin: 93%|█████████▎| 3.68G/3.94G [00:16<00:01, 251MB/s] open_clip_pytorch_model.bin: 94%|█████████▍| 3.71G/3.94G [00:16<00:00, 254MB/s] open_clip_pytorch_model.bin: 95%|█████████▍| 3.74G/3.94G [00:16<00:00, 251MB/s] open_clip_pytorch_model.bin: 96%|█████████▌| 3.77G/3.94G [00:16<00:00, 240MB/s] open_clip_pytorch_model.bin: 96%|█████████▋| 3.81G/3.94G [00:16<00:00, 256MB/s] open_clip_pytorch_model.bin: 97%|█████████▋| 3.84G/3.94G [00:16<00:00, 256MB/s] open_clip_pytorch_model.bin: 98%|█████████▊| 3.87G/3.94G [00:17<00:00, 240MB/s] open_clip_pytorch_model.bin: 99%|█████████▉| 3.90G/3.94G [00:17<00:00, 242MB/s] open_clip_pytorch_model.bin: 100%|█████████▉| 3.93G/3.94G [00:17<00:00, 245MB/s] open_clip_pytorch_model.bin: 100%|██████████| 3.94G/3.94G [00:17<00:00, 227MB/s] /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead. warnings.warn( /root/.pyenv/versions/3.11.7/lib/python3.11/site-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=VGG16_Weights.IMAGENET1K_V1`. You can also use `weights=VGG16_Weights.DEFAULT` to get the most up-to-date weights. warnings.warn(msg) loaded pretrained LPIPS loss from taming/modules/autoencoder/lpips/vgg.pth Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is None and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 320, context_dim is 1024 and using 5 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is None and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 640, context_dim is 1024 and using 10 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is None and using 20 heads. Setting up MemoryEfficientCrossAttention. Query dim is 1280, context_dim is 1024 and using 20 heads. Using seed: 42309 Global seed set to 42309 timesteps used in spaced sampler: [0, 23, 45, 68, 91, 114, 136, 159, 182, 204, 227, 250, 272, 295, 318, 341, 363, 386, 409, 431, 454, 477, 499, 522, 545, 568, 590, 613, 636, 658, 681, 704, 727, 749, 772, 795, 817, 840, 863, 885, 908, 931, 954, 976, 999] Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s]/src/model/q_sampler.py:467: UserWarning: To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor). tao_index = torch.tensor(torch.round(index * t_max), dtype=torch.int64) Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s] Spaced Sampler: 0%| | 0/45 [00:00<?, ?it/s] Spaced Sampler: 2%|▏ | 1/45 [00:00<00:08, 5.19it/s] Spaced Sampler: 4%|▍ | 2/45 [00:00<00:08, 5.21it/s] Spaced Sampler: 7%|▋ | 3/45 [00:00<00:08, 5.22it/s] Spaced Sampler: 9%|▉ | 4/45 [00:00<00:07, 5.23it/s] Spaced Sampler: 11%|█ | 5/45 [00:00<00:07, 5.23it/s] Spaced Sampler: 13%|█▎ | 6/45 [00:01<00:07, 5.23it/s] Spaced Sampler: 16%|█▌ | 7/45 [00:01<00:07, 5.23it/s] Spaced Sampler: 18%|█▊ | 8/45 [00:01<00:07, 5.23it/s] Spaced Sampler: 20%|██ | 9/45 [00:01<00:06, 5.22it/s] Spaced Sampler: 22%|██▏ | 10/45 [00:01<00:06, 5.22it/s] Spaced Sampler: 24%|██▍ | 11/45 [00:02<00:06, 5.23it/s] Spaced Sampler: 27%|██▋ | 12/45 [00:02<00:06, 5.22it/s] Spaced Sampler: 29%|██▉ | 13/45 [00:02<00:06, 5.23it/s] Spaced Sampler: 31%|███ | 14/45 [00:02<00:05, 5.22it/s] Spaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s] Spaced Sampler: 33%|███▎ | 15/45 [00:02<00:05, 5.22it/s]
Want to make some of these yourself?
Run this model