ericguizzo / reckon
Generate sound dreams
Prediction
ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47IDqlcmuei5k5fbpjazgismlkgyjmStatusSucceededSourceWebHardware–Total duration–CreatedInput
- density
- "0.5"
- memories
- pianoChill, guitarAcoustic
- diversity
- "0.3"
- output_type
- mp3
- dream_length
- "0.5"
{ "density": "0.5", "memories": "pianoChill, guitarAcoustic", "diversity": "0.3", "output_type": "mp3", "dream_length": "0.5" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ericguizzo/reckon using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47", { input: { density: "0.5", memories: "pianoChill, guitarAcoustic", diversity: "0.3", output_type: "mp3", dream_length: "0.5" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ericguizzo/reckon using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47", input={ "density": "0.5", "memories": "pianoChill, guitarAcoustic", "diversity": "0.3", "output_type": "mp3", "dream_length": "0.5" } ) # The ericguizzo/reckon model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/ericguizzo/reckon/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run ericguizzo/reckon using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47", "input": { "density": "0.5", "memories": "pianoChill, guitarAcoustic", "diversity": "0.3", "output_type": "mp3", "dream_length": "0.5" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/ericguizzo/reckon@sha256:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47 \ -i 'density="0.5"' \ -i 'memories="pianoChill, guitarAcoustic"' \ -i 'diversity="0.3"' \ -i 'output_type="mp3"' \ -i 'dream_length="0.5"'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 r8.im/ericguizzo/reckon@sha256:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "density": "0.5", "memories": "pianoChill, guitarAcoustic", "diversity": "0.3", "output_type": "mp3", "dream_length": "0.5" } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
Video Player is loading.Current Time 00:00:000/Duration 00:00:000Loaded: 0%00:00:000Stream Type LIVERemaining Time -00:00:0001x- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
The media could not be loaded, either because the server or network failed or because the format is not supported.Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{ "completed_at": "2021-10-10T10:54:29.458162Z", "created_at": "2021-10-10T10:53:50.463363Z", "data_removed": false, "error": null, "id": "qlcmuei5k5fbpjazgismlkgyjm", "input": { "density": "0.5", "memories": "pianoChill, guitarAcoustic", "diversity": "0.3", "output_type": "mp3", "dream_length": "0.5" }, "logs": "['pianoSmooth', 'pianoDreamy', 'classical2', 'pianoChill', 'buchla2', 'ambient1', 'percsWar', 'jazz', 'africanPercs', 'guitarAcoustic', 'percussions', 'classical', 'guitarBaroque', 'buchla', 'organ']\n['forest', 'birdsStreet', 'wind', 'airport', 'mixed', 'office', 'rain', 'sea', 'library', 'train']\npianoChill\nguitarAcoustic\nMemories dict:\n{'instrumental': ['pianoChill', 'guitarAcoustic']}\nbuiling random dream\nscene durations:\n[0.29909433937875046, 0.7306079740901411]\n<multiprocessing.queues.SimpleQueue object at 0x7fc239199a90>\n<multiprocessing.queues.SimpleQueue object at 0x7fc239199a90>\nbuilding scene\nbuilding scene\n[>...................] Progress: 2%\n[>...................] Progress: 2%\n[>...................] Progress: 4%\n[>...................] Progress: 4%\n[=>..................] Progress: 7%\n[=>..................] Progress: 7%\n[=>..................] Progress: 9%\n[=>..................] Progress: 9%\n[==>.................] Progress: 11%\n[==>.................] Progress: 11%\n[==>.................] Progress: 13%\n[==>.................] Progress: 13%\n[===>................] Progress: 15%\n[===>................] Progress: 15%\n[===>................] Progress: 17%\n[===>................] Progress: 17%\n[===>................] Progress: 20%\n[====>...............] Progress: 22%\n[===>................] Progress: 20%\n[====>...............] Progress: 22%\n[====>...............] Progress: 24%\n[=====>..............] Progress: 26%\n[====>...............] Progress: 24%\n[=====>..............] Progress: 26%\n[=====>..............] Progress: 28%\n[=====>..............] Progress: 28%\n[======>.............] Progress: 30%\n[======>.............] Progress: 30%\n[======>.............] Progress: 33%\n[======>.............] Progress: 33%\n[======>.............] Progress: 35%\n[======>.............] Progress: 35%\n[=======>............] Progress: 37%\n[=======>............] Progress: 37%\n[=======>............] Progress: 39%\n[=======>............] Progress: 39%\n[========>...........] Progress: 41%\n[========>...........] Progress: 41%\n[========>...........] Progress: 43%\n[========>...........] Progress: 43%\n[=========>..........] Progress: 46%\n[=========>..........] Progress: 46%\n[=========>..........] Progress: 48%\n[==========>.........] Progress: 50%\n[=========>..........] Progress: 48%\n[==========>.........] Progress: 50%\n[==========>.........] Progress: 52%\n[==========>.........] Progress: 52%\n[==========>.........] Progress: 54%\n[==========>.........] Progress: 54%\n[===========>........] Progress: 57%\n[===========>........] Progress: 57%\n[===========>........] Progress: 59%\n[===========>........] Progress: 59%\n[============>.......] Progress: 61%\n[============>.......] Progress: 61%\n[============>.......] Progress: 63%\n[============>.......] Progress: 63%\n[=============>......] Progress: 65%\n[=============>......] Progress: 65%\n[=============>......] Progress: 67%\n[=============>......] Progress: 67%\n[=============>......] Progress: 70%\n[=============>......] Progress: 70%\n[==============>.....] Progress: 72%\n[==============>.....] Progress: 72%\n[==============>.....] Progress: 74%\n[==============>.....] Progress: 74%\n[===============>....] Progress: 76%\n[===============>....] Progress: 76%\n[===============>....] Progress: 78%\n[===============>....] Progress: 78%\n[================>...] Progress: 80%\n[================>...] Progress: 83%\n[================>...] Progress: 80%\n[================>...] Progress: 85%\n[================>...] Progress: 83%\n[=================>..] Progress: 87%\n[================>...] Progress: 85%\n[=================>..] Progress: 89%\n[=================>..] Progress: 87%\n[==================>.] Progress: 91%\n[=================>..] Progress: 89%\n[==================>.] Progress: 93%\n[==================>.] Progress: 91%\n[===================>] Progress: 96%\n[==================>.] Progress: 93%\n[===================>] Progress: 98%\n[====================>] Progress: 100%\n\napplying global post-processing\n[===================>] Progress: 96%\n[===================>] Progress: 98%\n[====================>] Progress: 100%\n\napplying global post-processing\nconcatenating scenes\nWriting sounds to file", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/63f14a72-d527-42fd-8381-84ba1eb80233/output.mp3" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qlcmuei5k5fbpjazgismlkgyjm", "cancel": "https://api.replicate.com/v1/predictions/qlcmuei5k5fbpjazgismlkgyjm/cancel" }, "version": "1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47" }
['pianoSmooth', 'pianoDreamy', 'classical2', 'pianoChill', 'buchla2', 'ambient1', 'percsWar', 'jazz', 'africanPercs', 'guitarAcoustic', 'percussions', 'classical', 'guitarBaroque', 'buchla', 'organ'] ['forest', 'birdsStreet', 'wind', 'airport', 'mixed', 'office', 'rain', 'sea', 'library', 'train'] pianoChill guitarAcoustic Memories dict: {'instrumental': ['pianoChill', 'guitarAcoustic']} builing random dream scene durations: [0.29909433937875046, 0.7306079740901411] <multiprocessing.queues.SimpleQueue object at 0x7fc239199a90> <multiprocessing.queues.SimpleQueue object at 0x7fc239199a90> building scene building scene [>...................] Progress: 2% [>...................] Progress: 2% [>...................] Progress: 4% [>...................] Progress: 4% [=>..................] Progress: 7% [=>..................] Progress: 7% [=>..................] Progress: 9% [=>..................] Progress: 9% [==>.................] Progress: 11% [==>.................] Progress: 11% [==>.................] Progress: 13% [==>.................] Progress: 13% [===>................] Progress: 15% [===>................] Progress: 15% [===>................] Progress: 17% [===>................] Progress: 17% [===>................] Progress: 20% [====>...............] Progress: 22% [===>................] Progress: 20% [====>...............] Progress: 22% [====>...............] Progress: 24% [=====>..............] Progress: 26% [====>...............] Progress: 24% [=====>..............] Progress: 26% [=====>..............] Progress: 28% [=====>..............] Progress: 28% [======>.............] Progress: 30% [======>.............] Progress: 30% [======>.............] Progress: 33% [======>.............] Progress: 33% [======>.............] Progress: 35% [======>.............] Progress: 35% [=======>............] Progress: 37% [=======>............] Progress: 37% [=======>............] Progress: 39% [=======>............] Progress: 39% [========>...........] Progress: 41% [========>...........] Progress: 41% [========>...........] Progress: 43% [========>...........] Progress: 43% [=========>..........] Progress: 46% [=========>..........] Progress: 46% [=========>..........] Progress: 48% [==========>.........] Progress: 50% [=========>..........] Progress: 48% [==========>.........] Progress: 50% [==========>.........] Progress: 52% [==========>.........] Progress: 52% [==========>.........] Progress: 54% [==========>.........] Progress: 54% [===========>........] Progress: 57% [===========>........] Progress: 57% [===========>........] Progress: 59% [===========>........] Progress: 59% [============>.......] Progress: 61% [============>.......] Progress: 61% [============>.......] Progress: 63% [============>.......] Progress: 63% [=============>......] Progress: 65% [=============>......] Progress: 65% [=============>......] Progress: 67% [=============>......] Progress: 67% [=============>......] Progress: 70% [=============>......] Progress: 70% [==============>.....] Progress: 72% [==============>.....] Progress: 72% [==============>.....] Progress: 74% [==============>.....] Progress: 74% [===============>....] Progress: 76% [===============>....] Progress: 76% [===============>....] Progress: 78% [===============>....] Progress: 78% [================>...] Progress: 80% [================>...] Progress: 83% [================>...] Progress: 80% [================>...] Progress: 85% [================>...] Progress: 83% [=================>..] Progress: 87% [================>...] Progress: 85% [=================>..] Progress: 89% [=================>..] Progress: 87% [==================>.] Progress: 91% [=================>..] Progress: 89% [==================>.] Progress: 93% [==================>.] Progress: 91% [===================>] Progress: 96% [==================>.] Progress: 93% [===================>] Progress: 98% [====================>] Progress: 100% applying global post-processing [===================>] Progress: 96% [===================>] Progress: 98% [====================>] Progress: 100% applying global post-processing concatenating scenes Writing sounds to file
Prediction
ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47IDwb7njizyurbkplnuwy2nav3t4uStatusSucceededSourceWebHardware–Total duration–CreatedInput
- density
- "0.3"
- memories
- guitarBaroque, buchla, library, pianoSmooth
- diversity
- "0.2"
- output_type
- mp3
- dream_length
- "1."
{ "density": "0.3", "memories": "guitarBaroque, buchla, library, pianoSmooth", "diversity": "0.2", "output_type": "mp3", "dream_length": "1." }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run ericguizzo/reckon using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47", { input: { density: "0.3", memories: "guitarBaroque, buchla, library, pianoSmooth", diversity: "0.2", output_type: "mp3", dream_length: "1." } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run ericguizzo/reckon using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47", input={ "density": "0.3", "memories": "guitarBaroque, buchla, library, pianoSmooth", "diversity": "0.2", "output_type": "mp3", "dream_length": "1." } ) # The ericguizzo/reckon model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/ericguizzo/reckon/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run ericguizzo/reckon using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "ericguizzo/reckon:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47", "input": { "density": "0.3", "memories": "guitarBaroque, buchla, library, pianoSmooth", "diversity": "0.2", "output_type": "mp3", "dream_length": "1." } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/ericguizzo/reckon@sha256:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47 \ -i 'density="0.3"' \ -i 'memories="guitarBaroque, buchla, library, pianoSmooth"' \ -i 'diversity="0.2"' \ -i 'output_type="mp3"' \ -i 'dream_length="1."'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 r8.im/ericguizzo/reckon@sha256:1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "density": "0.3", "memories": "guitarBaroque, buchla, library, pianoSmooth", "diversity": "0.2", "output_type": "mp3", "dream_length": "1." } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
Video Player is loading.Current Time 00:00:000/Duration 00:00:000Loaded: 0%00:00:000Stream Type LIVERemaining Time -00:00:0001x- Chapters
- descriptions off, selected
- captions settings, opens captions settings dialog
- captions off, selected
This is a modal window.
The media could not be loaded, either because the server or network failed or because the format is not supported.Beginning of dialog window. Escape will cancel and close the window.
End of dialog window.
{ "completed_at": "2021-10-10T11:18:22.251514Z", "created_at": "2021-10-10T11:18:03.136589Z", "data_removed": false, "error": null, "id": "wb7njizyurbkplnuwy2nav3t4u", "input": { "density": "0.3", "memories": "guitarBaroque, buchla, library, pianoSmooth", "diversity": "0.2", "output_type": "mp3", "dream_length": "1." }, "logs": "['pianoSmooth', 'pianoDreamy', 'classical2', 'pianoChill', 'buchla2', 'ambient1', 'percsWar', 'jazz', 'africanPercs', 'guitarAcoustic', 'percussions', 'classical', 'guitarBaroque', 'buchla', 'organ']\n['forest', 'birdsStreet', 'wind', 'airport', 'mixed', 'office', 'rain', 'sea', 'library', 'train']\nguitarBaroque\nbuchla\nlibrary\npianoSmooth\nMemories dict:\n{'instrumental': ['guitarBaroque', 'buchla', 'pianoSmooth'], 'fieldrec': ['library']}\nbuiling random dream\nscene durations:\n[0.3336760938021246, 0.14592967777192473, 0.27641120446730233]\n<multiprocessing.queues.SimpleQueue object at 0x7fd5694f6790>\n<multiprocessing.queues.SimpleQueue object at 0x7fd5694f6790>\n<multiprocessing.queues.SimpleQueue object at 0x7fd5694f6790>\nbuilding scene\nbuilding scene\nbuilding scene\n[>...................] Progress: 5%\n[>...................] Progress: 5%\n[>...................] Progress: 5%\n[=>..................] Progress: 10%\n[=>..................] Progress: 10%\n[=>..................] Progress: 10%\n[==>.................] Progress: 14%\n[==>.................] Progress: 14%\n[==>.................] Progress: 14%\n[===>................] Progress: 19%\n[===>................] Progress: 19%\n[===>................] Progress: 19%\n[====>...............] Progress: 24%\n[====>...............] Progress: 24%\n[====>...............] Progress: 24%\n[=====>..............] Progress: 29%\n[=====>..............] Progress: 29%\n[=====>..............] Progress: 29%\n[======>.............] Progress: 33%\n[======>.............] Progress: 33%\n[======>.............] Progress: 33%\n[=======>............] Progress: 38%\n[=======>............] Progress: 38%\n[=======>............] Progress: 38%\n[========>...........] Progress: 43%\n[========>...........] Progress: 43%\n[========>...........] Progress: 43%\n[=========>..........] Progress: 48%\n[=========>..........] Progress: 48%\n[=========>..........] Progress: 48%\n[==========>.........] Progress: 52%\n[==========>.........] Progress: 52%\n[==========>.........] Progress: 52%\n[===========>........] Progress: 57%\n[===========>........] Progress: 57%\n[===========>........] Progress: 57%\n[============>.......] Progress: 62%\n[============>.......] Progress: 62%\n[============>.......] Progress: 62%\n[=============>......] Progress: 67%\n[=============>......] Progress: 67%\n[==============>.....] Progress: 71%\n[=============>......] Progress: 67%\n[==============>.....] Progress: 71%\n[===============>....] Progress: 76%\n[==============>.....] Progress: 71%\n[===============>....] Progress: 76%\n[================>...] Progress: 81%\n[===============>....] Progress: 76%\n[================>...] Progress: 81%\n[=================>..] Progress: 86%\n[================>...] Progress: 81%\n[=================>..] Progress: 86%\n[==================>.] Progress: 90%\n[=================>..] Progress: 86%\n[==================>.] Progress: 90%\n[===================>] Progress: 95%\n[====================>] Progress: 100%\n\napplying global post-processing\n[===================>] Progress: 95%\n[==================>.] Progress: 90%\n[===================>] Progress: 95%\n[====================>] Progress: 100%\n\napplying global post-processing\n[====================>] Progress: 100%\n\napplying global post-processing\nconcatenating scenes\nWriting sounds to file", "metrics": { "total_time": 19.114925 }, "output": [ { "file": "https://replicate.delivery/mgxm/e06534ca-585d-4c56-ba2e-1e74a8155f3d/output.mp3" } ], "started_at": "2022-03-11T20:42:52.682738Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/wb7njizyurbkplnuwy2nav3t4u", "cancel": "https://api.replicate.com/v1/predictions/wb7njizyurbkplnuwy2nav3t4u/cancel" }, "version": "1a434b645539581dc7940e5da4138b6b1569cf677fcf7ea8bbffa6cd691ceb47" }
['pianoSmooth', 'pianoDreamy', 'classical2', 'pianoChill', 'buchla2', 'ambient1', 'percsWar', 'jazz', 'africanPercs', 'guitarAcoustic', 'percussions', 'classical', 'guitarBaroque', 'buchla', 'organ'] ['forest', 'birdsStreet', 'wind', 'airport', 'mixed', 'office', 'rain', 'sea', 'library', 'train'] guitarBaroque buchla library pianoSmooth Memories dict: {'instrumental': ['guitarBaroque', 'buchla', 'pianoSmooth'], 'fieldrec': ['library']} builing random dream scene durations: [0.3336760938021246, 0.14592967777192473, 0.27641120446730233] <multiprocessing.queues.SimpleQueue object at 0x7fd5694f6790> <multiprocessing.queues.SimpleQueue object at 0x7fd5694f6790> <multiprocessing.queues.SimpleQueue object at 0x7fd5694f6790> building scene building scene building scene [>...................] Progress: 5% [>...................] Progress: 5% [>...................] Progress: 5% [=>..................] Progress: 10% [=>..................] Progress: 10% [=>..................] Progress: 10% [==>.................] Progress: 14% [==>.................] Progress: 14% [==>.................] Progress: 14% [===>................] Progress: 19% [===>................] Progress: 19% [===>................] Progress: 19% [====>...............] Progress: 24% [====>...............] Progress: 24% [====>...............] Progress: 24% [=====>..............] Progress: 29% [=====>..............] Progress: 29% [=====>..............] Progress: 29% [======>.............] Progress: 33% [======>.............] Progress: 33% [======>.............] Progress: 33% [=======>............] Progress: 38% [=======>............] Progress: 38% [=======>............] Progress: 38% [========>...........] Progress: 43% [========>...........] Progress: 43% [========>...........] Progress: 43% [=========>..........] Progress: 48% [=========>..........] Progress: 48% [=========>..........] Progress: 48% [==========>.........] Progress: 52% [==========>.........] Progress: 52% [==========>.........] Progress: 52% [===========>........] Progress: 57% [===========>........] Progress: 57% [===========>........] Progress: 57% [============>.......] Progress: 62% [============>.......] Progress: 62% [============>.......] Progress: 62% [=============>......] Progress: 67% [=============>......] Progress: 67% [==============>.....] Progress: 71% [=============>......] Progress: 67% [==============>.....] Progress: 71% [===============>....] Progress: 76% [==============>.....] Progress: 71% [===============>....] Progress: 76% [================>...] Progress: 81% [===============>....] Progress: 76% [================>...] Progress: 81% [=================>..] Progress: 86% [================>...] Progress: 81% [=================>..] Progress: 86% [==================>.] Progress: 90% [=================>..] Progress: 86% [==================>.] Progress: 90% [===================>] Progress: 95% [====================>] Progress: 100% applying global post-processing [===================>] Progress: 95% [==================>.] Progress: 90% [===================>] Progress: 95% [====================>] Progress: 100% applying global post-processing [====================>] Progress: 100% applying global post-processing concatenating scenes Writing sounds to file
Want to make some of these yourself?
Run this model