Readme
SDXL-Turbo
SDXL-Turbo is a fast generative text-to-image model that can synthesize photorealistic images from a text prompt in a single network evaluation.
A real-time demo is available here: http://clipdrop.co/stable-diffusion-turbo Please note: For commercial use, please refer to https://stability.ai/license.
Introduction
SDXL-Turbo is a distilled version of SDXL 1.0, trained for real-time synthesis.
SDXL-Turbo is based on a novel training method called Adversarial Diffusion Distillation (ADD) (see the technical report), which allows sampling large-scale foundational image diffusion models in 1 to 4 steps at high image quality.
This approach uses score distillation to leverage large-scale off-the-shelf image diffusion models as a teacher signal and combines this with an adversarial loss to ensure high image fidelity even in the low-step regime of one or two sampling steps.
- Developed by: Stability AI
- Funded by: Stability AI
- Model type: Generative text-to-image model
- Finetuned from model: SDXL 1.0 Base
For research purposes, we recommend our generative-models
Github repository (https://github.com/Stability-AI/generative-models),
which implements the most popular diffusion frameworks (both training and inference).
- Repository: https://github.com/Stability-AI/generative-models
- Paper: https://stability.ai/research/adversarial-diffusion-distillation
- Demo: http://clipdrop.co/stable-diffusion-turbo
Citation
@misc{2311.17042,
Author = {Axel Sauer and Dominik Lorenz and Andreas Blattmann and Robin Rombach},
Title = {Adversarial Diffusion Distillation},
Year = {2023},
Eprint = {arXiv:2311.17042},
}