Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run kjw488/sdxl-demo-ai-interior using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"kjw488/sdxl-demo-ai-interior:8859e91ed00a9fc819f53b36b917b5a23506173c8a96f9a7c7b604ad514b91fc",
{
input: {
image: "https://replicate.delivery/pbxt/KcjLG8lGt7w7cd8t8r0kivnE3i0jjEIr2djxcma2jqcuNodZ/CompressJPEG.online_512x512_image-2.jpg",
width: 512,
height: 512,
prompt: "Create a room in the cozy with the type room and the following furniture: chair, lamp",
refine: "base_image_refiner",
scheduler: "KarrasDPM",
lora_scale: 1,
num_outputs: 4,
guidance_scale: 7.5,
apply_watermark: true,
high_noise_frac: 0.8,
negative_prompt: "",
prompt_strength: 0.85,
num_inference_steps: 50
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run kjw488/sdxl-demo-ai-interior using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"kjw488/sdxl-demo-ai-interior:8859e91ed00a9fc819f53b36b917b5a23506173c8a96f9a7c7b604ad514b91fc",
input={
"image": "https://replicate.delivery/pbxt/KcjLG8lGt7w7cd8t8r0kivnE3i0jjEIr2djxcma2jqcuNodZ/CompressJPEG.online_512x512_image-2.jpg",
"width": 512,
"height": 512,
"prompt": "Create a room in the cozy with the type room and the following furniture: chair, lamp",
"refine": "base_image_refiner",
"scheduler": "KarrasDPM",
"lora_scale": 1,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": True,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.85,
"num_inference_steps": 50
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run kjw488/sdxl-demo-ai-interior using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "kjw488/sdxl-demo-ai-interior:8859e91ed00a9fc819f53b36b917b5a23506173c8a96f9a7c7b604ad514b91fc",
"input": {
"image": "https://replicate.delivery/pbxt/KcjLG8lGt7w7cd8t8r0kivnE3i0jjEIr2djxcma2jqcuNodZ/CompressJPEG.online_512x512_image-2.jpg",
"width": 512,
"height": 512,
"prompt": "Create a room in the cozy with the type room and the following furniture: chair, lamp",
"refine": "base_image_refiner",
"scheduler": "KarrasDPM",
"lora_scale": 1,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.85,
"num_inference_steps": 50
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-03-24T04:58:28.050990Z",
"created_at": "2024-03-24T04:58:10.539818Z",
"data_removed": false,
"error": null,
"id": "q6dt7edbfl4ybq5mqxotzmvnmq",
"input": {
"image": "https://replicate.delivery/pbxt/KcjLG8lGt7w7cd8t8r0kivnE3i0jjEIr2djxcma2jqcuNodZ/CompressJPEG.online_512x512_image-2.jpg",
"width": 512,
"height": 512,
"prompt": "Create a room in the cozy with the type room and the following furniture: chair, lamp",
"refine": "base_image_refiner",
"scheduler": "KarrasDPM",
"lora_scale": 1,
"num_outputs": 4,
"guidance_scale": 7.5,
"apply_watermark": true,
"high_noise_frac": 0.8,
"negative_prompt": "",
"prompt_strength": 0.85,
"num_inference_steps": 50
},
"logs": "Using seed: 35090\nEnsuring enough disk space...\nFree disk space: 1700165476352\nDownloading weights: https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar\n2024-03-24T04:58:11Z | INFO | [ Initiating ] dest=/src/weights-cache/818f78e8d0228613 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar\n2024-03-24T04:58:11Z | INFO | [ Complete ] dest=/src/weights-cache/818f78e8d0228613 size=\"186 MB\" total_elapsed=0.640s url=https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar\nb''\nDownloaded weights in 0.7716066837310791 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: Create a room in the cozy with the type room and the following furniture: chair, lamp\nimg2img mode\n 0%| | 0/42 [00:00<?, ?it/s]\n 2%|▏ | 1/42 [00:00<00:10, 3.98it/s]\n 5%|▍ | 2/42 [00:00<00:10, 3.87it/s]\n 7%|▋ | 3/42 [00:00<00:09, 3.91it/s]\n 10%|▉ | 4/42 [00:01<00:09, 3.92it/s]\n 12%|█▏ | 5/42 [00:01<00:09, 3.92it/s]\n 14%|█▍ | 6/42 [00:01<00:09, 3.93it/s]\n 17%|█▋ | 7/42 [00:01<00:08, 3.93it/s]\n 19%|█▉ | 8/42 [00:02<00:08, 3.93it/s]\n 21%|██▏ | 9/42 [00:02<00:08, 3.93it/s]\n 24%|██▍ | 10/42 [00:02<00:08, 3.93it/s]\n 26%|██▌ | 11/42 [00:02<00:07, 3.93it/s]\n 29%|██▊ | 12/42 [00:03<00:07, 3.93it/s]\n 31%|███ | 13/42 [00:03<00:07, 3.93it/s]\n 33%|███▎ | 14/42 [00:03<00:07, 3.94it/s]\n 36%|███▌ | 15/42 [00:03<00:06, 3.95it/s]\n 38%|███▊ | 16/42 [00:04<00:06, 3.95it/s]\n 40%|████ | 17/42 [00:04<00:06, 3.95it/s]\n 43%|████▎ | 18/42 [00:04<00:06, 3.95it/s]\n 45%|████▌ | 19/42 [00:04<00:05, 3.95it/s]\n 48%|████▊ | 20/42 [00:05<00:05, 3.95it/s]\n 50%|█████ | 21/42 [00:05<00:05, 3.95it/s]\n 52%|█████▏ | 22/42 [00:05<00:05, 3.95it/s]\n 55%|█████▍ | 23/42 [00:05<00:04, 3.95it/s]\n 57%|█████▋ | 24/42 [00:06<00:04, 3.95it/s]\n 60%|█████▉ | 25/42 [00:06<00:04, 3.95it/s]\n 62%|██████▏ | 26/42 [00:06<00:04, 3.95it/s]\n 64%|██████▍ | 27/42 [00:06<00:03, 3.95it/s]\n 67%|██████▋ | 28/42 [00:07<00:03, 3.95it/s]\n 69%|██████▉ | 29/42 [00:07<00:03, 3.95it/s]\n 71%|███████▏ | 30/42 [00:07<00:03, 3.95it/s]\n 74%|███████▍ | 31/42 [00:07<00:02, 3.95it/s]\n 76%|███████▌ | 32/42 [00:08<00:02, 3.95it/s]\n 79%|███████▊ | 33/42 [00:08<00:02, 3.95it/s]\n 81%|████████ | 34/42 [00:08<00:02, 3.95it/s]\n 83%|████████▎ | 35/42 [00:08<00:01, 3.94it/s]\n 86%|████████▌ | 36/42 [00:09<00:01, 3.94it/s]\n 88%|████████▊ | 37/42 [00:09<00:01, 3.94it/s]\n 90%|█████████ | 38/42 [00:09<00:01, 3.94it/s]\n 93%|█████████▎| 39/42 [00:09<00:00, 3.95it/s]\n 95%|█████████▌| 40/42 [00:10<00:00, 3.94it/s]\n98%|█████████▊| 41/42 [00:10<00:00, 3.94it/s]\n98%|█████████▊| 41/42 [00:10<00:00, 3.94it/s]\n 0%| | 0/15 [00:00<?, ?it/s]\n 7%|▋ | 1/15 [00:00<00:03, 4.64it/s]\n 13%|█▎ | 2/15 [00:00<00:02, 4.75it/s]\n 20%|██ | 3/15 [00:00<00:02, 4.78it/s]\n 27%|██▋ | 4/15 [00:00<00:02, 4.80it/s]\n 33%|███▎ | 5/15 [00:01<00:02, 4.80it/s]\n 40%|████ | 6/15 [00:01<00:01, 4.81it/s]\n 47%|████▋ | 7/15 [00:01<00:01, 4.81it/s]\n 53%|█████▎ | 8/15 [00:01<00:01, 4.81it/s]\n 60%|██████ | 9/15 [00:01<00:01, 4.81it/s]\n 67%|██████▋ | 10/15 [00:02<00:01, 4.81it/s]\n 73%|███████▎ | 11/15 [00:02<00:00, 4.80it/s]\n 80%|████████ | 12/15 [00:02<00:00, 4.81it/s]\n 87%|████████▋ | 13/15 [00:02<00:00, 4.81it/s]\n 93%|█████████▎| 14/15 [00:02<00:00, 4.82it/s]\n100%|██████████| 15/15 [00:03<00:00, 4.82it/s]\n100%|██████████| 15/15 [00:03<00:00, 4.80it/s]",
"metrics": {
"predict_time": 17.012148,
"total_time": 17.511172
},
"output": [
"https://replicate.delivery/pbxt/bFsleZBihgRTESdoI7a3Lfjypd9fvLp7eOTn4EKEQ2LPPZNKB/out-0.png",
"https://replicate.delivery/pbxt/H2LugZatfQXjQSAWJLo7ae5Lcol6PLww2PRhljtTcBYzTWjSA/out-1.png",
"https://replicate.delivery/pbxt/6lK1rlmA6rYXDFdL6My2zpxO2jPkEX7iI91l8fbHVj45JrRJA/out-2.png",
"https://replicate.delivery/pbxt/6qgnc2xBxAqeWKP4VGvFXtze5Etguy0szDN8ZQCGsy9zTWjSA/out-3.png"
],
"started_at": "2024-03-24T04:58:11.038842Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/q6dt7edbfl4ybq5mqxotzmvnmq",
"cancel": "https://api.replicate.com/v1/predictions/q6dt7edbfl4ybq5mqxotzmvnmq/cancel"
},
"version": "8859e91ed00a9fc819f53b36b917b5a23506173c8a96f9a7c7b604ad514b91fc"
}
Using seed: 35090
Ensuring enough disk space...
Free disk space: 1700165476352
Downloading weights: https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar
2024-03-24T04:58:11Z | INFO | [ Initiating ] dest=/src/weights-cache/818f78e8d0228613 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar
2024-03-24T04:58:11Z | INFO | [ Complete ] dest=/src/weights-cache/818f78e8d0228613 size="186 MB" total_elapsed=0.640s url=https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar
b''
Downloaded weights in 0.7716066837310791 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: Create a room in the cozy with the type room and the following furniture: chair, lamp
img2img mode
0%| | 0/42 [00:00<?, ?it/s]
2%|▏ | 1/42 [00:00<00:10, 3.98it/s]
5%|▍ | 2/42 [00:00<00:10, 3.87it/s]
7%|▋ | 3/42 [00:00<00:09, 3.91it/s]
10%|▉ | 4/42 [00:01<00:09, 3.92it/s]
12%|█▏ | 5/42 [00:01<00:09, 3.92it/s]
14%|█▍ | 6/42 [00:01<00:09, 3.93it/s]
17%|█▋ | 7/42 [00:01<00:08, 3.93it/s]
19%|█▉ | 8/42 [00:02<00:08, 3.93it/s]
21%|██▏ | 9/42 [00:02<00:08, 3.93it/s]
24%|██▍ | 10/42 [00:02<00:08, 3.93it/s]
26%|██▌ | 11/42 [00:02<00:07, 3.93it/s]
29%|██▊ | 12/42 [00:03<00:07, 3.93it/s]
31%|███ | 13/42 [00:03<00:07, 3.93it/s]
33%|███▎ | 14/42 [00:03<00:07, 3.94it/s]
36%|███▌ | 15/42 [00:03<00:06, 3.95it/s]
38%|███▊ | 16/42 [00:04<00:06, 3.95it/s]
40%|████ | 17/42 [00:04<00:06, 3.95it/s]
43%|████▎ | 18/42 [00:04<00:06, 3.95it/s]
45%|████▌ | 19/42 [00:04<00:05, 3.95it/s]
48%|████▊ | 20/42 [00:05<00:05, 3.95it/s]
50%|█████ | 21/42 [00:05<00:05, 3.95it/s]
52%|█████▏ | 22/42 [00:05<00:05, 3.95it/s]
55%|█████▍ | 23/42 [00:05<00:04, 3.95it/s]
57%|█████▋ | 24/42 [00:06<00:04, 3.95it/s]
60%|█████▉ | 25/42 [00:06<00:04, 3.95it/s]
62%|██████▏ | 26/42 [00:06<00:04, 3.95it/s]
64%|██████▍ | 27/42 [00:06<00:03, 3.95it/s]
67%|██████▋ | 28/42 [00:07<00:03, 3.95it/s]
69%|██████▉ | 29/42 [00:07<00:03, 3.95it/s]
71%|███████▏ | 30/42 [00:07<00:03, 3.95it/s]
74%|███████▍ | 31/42 [00:07<00:02, 3.95it/s]
76%|███████▌ | 32/42 [00:08<00:02, 3.95it/s]
79%|███████▊ | 33/42 [00:08<00:02, 3.95it/s]
81%|████████ | 34/42 [00:08<00:02, 3.95it/s]
83%|████████▎ | 35/42 [00:08<00:01, 3.94it/s]
86%|████████▌ | 36/42 [00:09<00:01, 3.94it/s]
88%|████████▊ | 37/42 [00:09<00:01, 3.94it/s]
90%|█████████ | 38/42 [00:09<00:01, 3.94it/s]
93%|█████████▎| 39/42 [00:09<00:00, 3.95it/s]
95%|█████████▌| 40/42 [00:10<00:00, 3.94it/s]
98%|█████████▊| 41/42 [00:10<00:00, 3.94it/s]
98%|█████████▊| 41/42 [00:10<00:00, 3.94it/s]
0%| | 0/15 [00:00<?, ?it/s]
7%|▋ | 1/15 [00:00<00:03, 4.64it/s]
13%|█▎ | 2/15 [00:00<00:02, 4.75it/s]
20%|██ | 3/15 [00:00<00:02, 4.78it/s]
27%|██▋ | 4/15 [00:00<00:02, 4.80it/s]
33%|███▎ | 5/15 [00:01<00:02, 4.80it/s]
40%|████ | 6/15 [00:01<00:01, 4.81it/s]
47%|████▋ | 7/15 [00:01<00:01, 4.81it/s]
53%|█████▎ | 8/15 [00:01<00:01, 4.81it/s]
60%|██████ | 9/15 [00:01<00:01, 4.81it/s]
67%|██████▋ | 10/15 [00:02<00:01, 4.81it/s]
73%|███████▎ | 11/15 [00:02<00:00, 4.80it/s]
80%|████████ | 12/15 [00:02<00:00, 4.81it/s]
87%|████████▋ | 13/15 [00:02<00:00, 4.81it/s]
93%|█████████▎| 14/15 [00:02<00:00, 4.82it/s]
100%|██████████| 15/15 [00:03<00:00, 4.82it/s]
100%|██████████| 15/15 [00:03<00:00, 4.80it/s]
This model costs approximately $0.0095 to run on Replicate, or 105 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 10 seconds.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 35090
Ensuring enough disk space...
Free disk space: 1700165476352
Downloading weights: https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar
2024-03-24T04:58:11Z | INFO | [ Initiating ] dest=/src/weights-cache/818f78e8d0228613 minimum_chunk_size=150M url=https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar
2024-03-24T04:58:11Z | INFO | [ Complete ] dest=/src/weights-cache/818f78e8d0228613 size="186 MB" total_elapsed=0.640s url=https://replicate.delivery/pbxt/r8nhsByEHhKyMVCN2qk8u9uPfkuOHAXLDBjraR8RErpf3ciSA/trained_model.tar
b''
Downloaded weights in 0.7716066837310791 seconds
Loading fine-tuned model
Does not have Unet. assume we are using LoRA
Loading Unet LoRA
Prompt: Create a room in the cozy with the type room and the following furniture: chair, lamp
img2img mode
0%| | 0/42 [00:00<?, ?it/s]
2%|▏ | 1/42 [00:00<00:10, 3.98it/s]
5%|▍ | 2/42 [00:00<00:10, 3.87it/s]
7%|▋ | 3/42 [00:00<00:09, 3.91it/s]
10%|▉ | 4/42 [00:01<00:09, 3.92it/s]
12%|█▏ | 5/42 [00:01<00:09, 3.92it/s]
14%|█▍ | 6/42 [00:01<00:09, 3.93it/s]
17%|█▋ | 7/42 [00:01<00:08, 3.93it/s]
19%|█▉ | 8/42 [00:02<00:08, 3.93it/s]
21%|██▏ | 9/42 [00:02<00:08, 3.93it/s]
24%|██▍ | 10/42 [00:02<00:08, 3.93it/s]
26%|██▌ | 11/42 [00:02<00:07, 3.93it/s]
29%|██▊ | 12/42 [00:03<00:07, 3.93it/s]
31%|███ | 13/42 [00:03<00:07, 3.93it/s]
33%|███▎ | 14/42 [00:03<00:07, 3.94it/s]
36%|███▌ | 15/42 [00:03<00:06, 3.95it/s]
38%|███▊ | 16/42 [00:04<00:06, 3.95it/s]
40%|████ | 17/42 [00:04<00:06, 3.95it/s]
43%|████▎ | 18/42 [00:04<00:06, 3.95it/s]
45%|████▌ | 19/42 [00:04<00:05, 3.95it/s]
48%|████▊ | 20/42 [00:05<00:05, 3.95it/s]
50%|█████ | 21/42 [00:05<00:05, 3.95it/s]
52%|█████▏ | 22/42 [00:05<00:05, 3.95it/s]
55%|█████▍ | 23/42 [00:05<00:04, 3.95it/s]
57%|█████▋ | 24/42 [00:06<00:04, 3.95it/s]
60%|█████▉ | 25/42 [00:06<00:04, 3.95it/s]
62%|██████▏ | 26/42 [00:06<00:04, 3.95it/s]
64%|██████▍ | 27/42 [00:06<00:03, 3.95it/s]
67%|██████▋ | 28/42 [00:07<00:03, 3.95it/s]
69%|██████▉ | 29/42 [00:07<00:03, 3.95it/s]
71%|███████▏ | 30/42 [00:07<00:03, 3.95it/s]
74%|███████▍ | 31/42 [00:07<00:02, 3.95it/s]
76%|███████▌ | 32/42 [00:08<00:02, 3.95it/s]
79%|███████▊ | 33/42 [00:08<00:02, 3.95it/s]
81%|████████ | 34/42 [00:08<00:02, 3.95it/s]
83%|████████▎ | 35/42 [00:08<00:01, 3.94it/s]
86%|████████▌ | 36/42 [00:09<00:01, 3.94it/s]
88%|████████▊ | 37/42 [00:09<00:01, 3.94it/s]
90%|█████████ | 38/42 [00:09<00:01, 3.94it/s]
93%|█████████▎| 39/42 [00:09<00:00, 3.95it/s]
95%|█████████▌| 40/42 [00:10<00:00, 3.94it/s]
98%|█████████▊| 41/42 [00:10<00:00, 3.94it/s]
98%|█████████▊| 41/42 [00:10<00:00, 3.94it/s]
0%| | 0/15 [00:00<?, ?it/s]
7%|▋ | 1/15 [00:00<00:03, 4.64it/s]
13%|█▎ | 2/15 [00:00<00:02, 4.75it/s]
20%|██ | 3/15 [00:00<00:02, 4.78it/s]
27%|██▋ | 4/15 [00:00<00:02, 4.80it/s]
33%|███▎ | 5/15 [00:01<00:02, 4.80it/s]
40%|████ | 6/15 [00:01<00:01, 4.81it/s]
47%|████▋ | 7/15 [00:01<00:01, 4.81it/s]
53%|█████▎ | 8/15 [00:01<00:01, 4.81it/s]
60%|██████ | 9/15 [00:01<00:01, 4.81it/s]
67%|██████▋ | 10/15 [00:02<00:01, 4.81it/s]
73%|███████▎ | 11/15 [00:02<00:00, 4.80it/s]
80%|████████ | 12/15 [00:02<00:00, 4.81it/s]
87%|████████▋ | 13/15 [00:02<00:00, 4.81it/s]
93%|█████████▎| 14/15 [00:02<00:00, 4.82it/s]
100%|██████████| 15/15 [00:03<00:00, 4.82it/s]
100%|██████████| 15/15 [00:03<00:00, 4.80it/s]