You're looking at a specific version of this model. Jump to the model overview.
lucataco /sdxl-controlnet-depth:465fb417
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/sdxl-controlnet-depth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/sdxl-controlnet-depth:465fb41789dc2203a9d7158be11d1d2570606a039c65e0e236fd329b5eecb10c",
{
input: {
seed: 25087,
image: "https://replicate.delivery/pbxt/JLl0qK0Hjm0GCGhfrmDPQDZkzKHBD98jQ1EjiRiUpC08MzK1/demo.png",
prompt: "spiderman lecture, photorealistic",
condition_scale: 0.5,
num_inference_steps: 30
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lucataco/sdxl-controlnet-depth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/sdxl-controlnet-depth:465fb41789dc2203a9d7158be11d1d2570606a039c65e0e236fd329b5eecb10c",
input={
"seed": 25087,
"image": "https://replicate.delivery/pbxt/JLl0qK0Hjm0GCGhfrmDPQDZkzKHBD98jQ1EjiRiUpC08MzK1/demo.png",
"prompt": "spiderman lecture, photorealistic",
"condition_scale": 0.5,
"num_inference_steps": 30
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/sdxl-controlnet-depth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "465fb41789dc2203a9d7158be11d1d2570606a039c65e0e236fd329b5eecb10c",
"input": {
"seed": 25087,
"image": "https://replicate.delivery/pbxt/JLl0qK0Hjm0GCGhfrmDPQDZkzKHBD98jQ1EjiRiUpC08MzK1/demo.png",
"prompt": "spiderman lecture, photorealistic",
"condition_scale": 0.5,
"num_inference_steps": 30
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/lucataco/sdxl-controlnet-depth@sha256:465fb41789dc2203a9d7158be11d1d2570606a039c65e0e236fd329b5eecb10c \
-i 'seed=25087' \
-i 'image="https://replicate.delivery/pbxt/JLl0qK0Hjm0GCGhfrmDPQDZkzKHBD98jQ1EjiRiUpC08MzK1/demo.png"' \
-i 'prompt="spiderman lecture, photorealistic"' \
-i 'condition_scale=0.5' \
-i 'num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/lucataco/sdxl-controlnet-depth@sha256:465fb41789dc2203a9d7158be11d1d2570606a039c65e0e236fd329b5eecb10c
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 25087, "image": "https://replicate.delivery/pbxt/JLl0qK0Hjm0GCGhfrmDPQDZkzKHBD98jQ1EjiRiUpC08MzK1/demo.png", "prompt": "spiderman lecture, photorealistic", "condition_scale": 0.5, "num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
Each run costs approximately $0.031. Alternatively, try out our featured models for free.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-12T22:47:53.749512Z",
"created_at": "2023-09-12T22:45:45.734709Z",
"data_removed": false,
"error": null,
"id": "cgekvctbear65ui5vgwiahmn34",
"input": {
"seed": 25087,
"image": "https://replicate.delivery/pbxt/JLl0qK0Hjm0GCGhfrmDPQDZkzKHBD98jQ1EjiRiUpC08MzK1/demo.png",
"prompt": "spiderman lecture, photorealistic",
"condition_scale": 0.5,
"num_inference_steps": 30
},
"logs": "Using seed: 25087\nOriginal width:458, height:458\nAspect Ratio: 1.00\nnew_width:1024, new_height:1024\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:09, 3.05it/s]\n 7%|▋ | 2/30 [00:00<00:08, 3.26it/s]\n 10%|█ | 3/30 [00:00<00:08, 3.33it/s]\n 13%|█▎ | 4/30 [00:01<00:07, 3.34it/s]\n 17%|█▋ | 5/30 [00:01<00:07, 3.36it/s]\n 20%|██ | 6/30 [00:01<00:07, 3.38it/s]\n 23%|██▎ | 7/30 [00:02<00:06, 3.38it/s]\n 27%|██▋ | 8/30 [00:02<00:06, 3.38it/s]\n 30%|███ | 9/30 [00:02<00:06, 3.39it/s]\n 33%|███▎ | 10/30 [00:02<00:05, 3.39it/s]\n 37%|███▋ | 11/30 [00:03<00:05, 3.38it/s]\n 40%|████ | 12/30 [00:03<00:05, 3.35it/s]\n 43%|████▎ | 13/30 [00:03<00:05, 3.37it/s]\n 47%|████▋ | 14/30 [00:04<00:04, 3.37it/s]\n 50%|█████ | 15/30 [00:04<00:04, 3.37it/s]\n 53%|█████▎ | 16/30 [00:04<00:04, 3.38it/s]\n 57%|█████▋ | 17/30 [00:05<00:03, 3.38it/s]\n 60%|██████ | 18/30 [00:05<00:03, 3.38it/s]\n 63%|██████▎ | 19/30 [00:05<00:03, 3.38it/s]\n 67%|██████▋ | 20/30 [00:05<00:02, 3.38it/s]\n 70%|███████ | 21/30 [00:06<00:02, 3.38it/s]\n 73%|███████▎ | 22/30 [00:06<00:02, 3.38it/s]\n 77%|███████▋ | 23/30 [00:06<00:02, 3.38it/s]\n 80%|████████ | 24/30 [00:07<00:01, 3.38it/s]\n 83%|████████▎ | 25/30 [00:07<00:01, 3.38it/s]\n 87%|████████▋ | 26/30 [00:07<00:01, 3.38it/s]\n 90%|█████████ | 27/30 [00:08<00:00, 3.38it/s]\n 93%|█████████▎| 28/30 [00:08<00:00, 3.38it/s]\n 97%|█████████▋| 29/30 [00:08<00:00, 3.38it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.38it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.37it/s]",
"metrics": {
"predict_time": 12.481869,
"total_time": 128.014803
},
"output": "https://pbxt.replicate.delivery/lvhWUVZ8cqaaDRyNwcoP5SxZnZYO8lG3JXqRmNFAM5Fmc6YE/output.png",
"started_at": "2023-09-12T22:47:41.267643Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/cgekvctbear65ui5vgwiahmn34",
"cancel": "https://api.replicate.com/v1/predictions/cgekvctbear65ui5vgwiahmn34/cancel"
},
"version": "5e0a5cda895aa23a1aaa1a9a265220097102448e1b4c42b22a3c6d87c12d41a9"
}
Using seed: 25087
Original width:458, height:458
Aspect Ratio: 1.00
new_width:1024, new_height:1024
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:09, 3.05it/s]
7%|▋ | 2/30 [00:00<00:08, 3.26it/s]
10%|█ | 3/30 [00:00<00:08, 3.33it/s]
13%|█▎ | 4/30 [00:01<00:07, 3.34it/s]
17%|█▋ | 5/30 [00:01<00:07, 3.36it/s]
20%|██ | 6/30 [00:01<00:07, 3.38it/s]
23%|██▎ | 7/30 [00:02<00:06, 3.38it/s]
27%|██▋ | 8/30 [00:02<00:06, 3.38it/s]
30%|███ | 9/30 [00:02<00:06, 3.39it/s]
33%|███▎ | 10/30 [00:02<00:05, 3.39it/s]
37%|███▋ | 11/30 [00:03<00:05, 3.38it/s]
40%|████ | 12/30 [00:03<00:05, 3.35it/s]
43%|████▎ | 13/30 [00:03<00:05, 3.37it/s]
47%|████▋ | 14/30 [00:04<00:04, 3.37it/s]
50%|█████ | 15/30 [00:04<00:04, 3.37it/s]
53%|█████▎ | 16/30 [00:04<00:04, 3.38it/s]
57%|█████▋ | 17/30 [00:05<00:03, 3.38it/s]
60%|██████ | 18/30 [00:05<00:03, 3.38it/s]
63%|██████▎ | 19/30 [00:05<00:03, 3.38it/s]
67%|██████▋ | 20/30 [00:05<00:02, 3.38it/s]
70%|███████ | 21/30 [00:06<00:02, 3.38it/s]
73%|███████▎ | 22/30 [00:06<00:02, 3.38it/s]
77%|███████▋ | 23/30 [00:06<00:02, 3.38it/s]
80%|████████ | 24/30 [00:07<00:01, 3.38it/s]
83%|████████▎ | 25/30 [00:07<00:01, 3.38it/s]
87%|████████▋ | 26/30 [00:07<00:01, 3.38it/s]
90%|█████████ | 27/30 [00:08<00:00, 3.38it/s]
93%|█████████▎| 28/30 [00:08<00:00, 3.38it/s]
97%|█████████▋| 29/30 [00:08<00:00, 3.38it/s]
100%|██████████| 30/30 [00:08<00:00, 3.38it/s]
100%|██████████| 30/30 [00:08<00:00, 3.37it/s]
This example was created by a different version, lucataco/sdxl-controlnet-depth:5e0a5cda.