Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
lucataco /sdxl-controlnet-depth:5e0a5cda
This version has been disabled because it consistently fails to complete setup.
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run lucataco/sdxl-controlnet-depth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"lucataco/sdxl-controlnet-depth:5e0a5cda895aa23a1aaa1a9a265220097102448e1b4c42b22a3c6d87c12d41a9",
{
input: {
seed: 39035,
image: "https://replicate.delivery/pbxt/JOGUi29yzacQHdsW1gqFcSmxELopCmEUYfFKQHMXt1KhBOvt/empty_salon.jpg",
prompt: "Sofa and table, cinematic, contour, lighting, highly detailed, summer, golden hour, photorealistic",
condition_scale: 0.5,
num_inference_steps: 30
}
}
);
// To access the file URL:
console.log(output.url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run lucataco/sdxl-controlnet-depth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"lucataco/sdxl-controlnet-depth:5e0a5cda895aa23a1aaa1a9a265220097102448e1b4c42b22a3c6d87c12d41a9",
input={
"seed": 39035,
"image": "https://replicate.delivery/pbxt/JOGUi29yzacQHdsW1gqFcSmxELopCmEUYfFKQHMXt1KhBOvt/empty_salon.jpg",
"prompt": "Sofa and table, cinematic, contour, lighting, highly detailed, summer, golden hour, photorealistic",
"condition_scale": 0.5,
"num_inference_steps": 30
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run lucataco/sdxl-controlnet-depth using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "lucataco/sdxl-controlnet-depth:5e0a5cda895aa23a1aaa1a9a265220097102448e1b4c42b22a3c6d87c12d41a9",
"input": {
"seed": 39035,
"image": "https://replicate.delivery/pbxt/JOGUi29yzacQHdsW1gqFcSmxELopCmEUYfFKQHMXt1KhBOvt/empty_salon.jpg",
"prompt": "Sofa and table, cinematic, contour, lighting, highly detailed, summer, golden hour, photorealistic",
"condition_scale": 0.5,
"num_inference_steps": 30
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
{
"completed_at": "2023-09-12T22:49:36.847960Z",
"created_at": "2023-09-12T22:49:25.737212Z",
"data_removed": false,
"error": null,
"id": "qsllmwtbcs5i5xgw4zngjgdgae",
"input": {
"seed": 39035,
"image": "https://replicate.delivery/pbxt/JOGUi29yzacQHdsW1gqFcSmxELopCmEUYfFKQHMXt1KhBOvt/empty_salon.jpg",
"prompt": "Sofa and table, cinematic, contour, lighting, highly detailed, summer, golden hour, photorealistic",
"condition_scale": 0.5,
"num_inference_steps": 30
},
"logs": "Using seed: 39035\nOriginal width:800, height:534\nAspect Ratio: 1.50\nnew_width:1216, new_height:832\n 0%| | 0/30 [00:00<?, ?it/s]\n 3%|▎ | 1/30 [00:00<00:08, 3.49it/s]\n 7%|▋ | 2/30 [00:00<00:08, 3.47it/s]\n 10%|█ | 3/30 [00:00<00:07, 3.47it/s]\n 13%|█▎ | 4/30 [00:01<00:07, 3.45it/s]\n 17%|█▋ | 5/30 [00:01<00:07, 3.46it/s]\n 20%|██ | 6/30 [00:01<00:06, 3.45it/s]\n 23%|██▎ | 7/30 [00:02<00:06, 3.45it/s]\n 27%|██▋ | 8/30 [00:02<00:06, 3.45it/s]\n 30%|███ | 9/30 [00:02<00:06, 3.45it/s]\n 33%|███▎ | 10/30 [00:02<00:05, 3.46it/s]\n 37%|███▋ | 11/30 [00:03<00:05, 3.47it/s]\n 40%|████ | 12/30 [00:03<00:05, 3.47it/s]\n 43%|████▎ | 13/30 [00:03<00:04, 3.47it/s]\n 47%|████▋ | 14/30 [00:04<00:04, 3.47it/s]\n 50%|█████ | 15/30 [00:04<00:04, 3.47it/s]\n 53%|█████▎ | 16/30 [00:04<00:04, 3.48it/s]\n 57%|█████▋ | 17/30 [00:04<00:03, 3.48it/s]\n 60%|██████ | 18/30 [00:05<00:03, 3.47it/s]\n 63%|██████▎ | 19/30 [00:05<00:03, 3.48it/s]\n 67%|██████▋ | 20/30 [00:05<00:02, 3.47it/s]\n 70%|███████ | 21/30 [00:06<00:02, 3.47it/s]\n 73%|███████▎ | 22/30 [00:06<00:02, 3.47it/s]\n 77%|███████▋ | 23/30 [00:06<00:02, 3.48it/s]\n 80%|████████ | 24/30 [00:06<00:01, 3.47it/s]\n 83%|████████▎ | 25/30 [00:07<00:01, 3.47it/s]\n 87%|████████▋ | 26/30 [00:07<00:01, 3.47it/s]\n 90%|█████████ | 27/30 [00:07<00:00, 3.47it/s]\n 93%|█████████▎| 28/30 [00:08<00:00, 3.47it/s]\n 97%|█████████▋| 29/30 [00:08<00:00, 3.47it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.47it/s]\n100%|██████████| 30/30 [00:08<00:00, 3.47it/s]",
"metrics": {
"predict_time": 11.078298,
"total_time": 11.110748
},
"output": "https://pbxt.replicate.delivery/w9Bj5nTpHdqWOVRjVisQmB0dOUM0XEip06prMfQ12VmfzpjRA/output.png",
"started_at": "2023-09-12T22:49:25.769662Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/qsllmwtbcs5i5xgw4zngjgdgae",
"cancel": "https://api.replicate.com/v1/predictions/qsllmwtbcs5i5xgw4zngjgdgae/cancel"
},
"version": "5e0a5cda895aa23a1aaa1a9a265220097102448e1b4c42b22a3c6d87c12d41a9"
}
Using seed: 39035
Original width:800, height:534
Aspect Ratio: 1.50
new_width:1216, new_height:832
0%| | 0/30 [00:00<?, ?it/s]
3%|▎ | 1/30 [00:00<00:08, 3.49it/s]
7%|▋ | 2/30 [00:00<00:08, 3.47it/s]
10%|█ | 3/30 [00:00<00:07, 3.47it/s]
13%|█▎ | 4/30 [00:01<00:07, 3.45it/s]
17%|█▋ | 5/30 [00:01<00:07, 3.46it/s]
20%|██ | 6/30 [00:01<00:06, 3.45it/s]
23%|██▎ | 7/30 [00:02<00:06, 3.45it/s]
27%|██▋ | 8/30 [00:02<00:06, 3.45it/s]
30%|███ | 9/30 [00:02<00:06, 3.45it/s]
33%|███▎ | 10/30 [00:02<00:05, 3.46it/s]
37%|███▋ | 11/30 [00:03<00:05, 3.47it/s]
40%|████ | 12/30 [00:03<00:05, 3.47it/s]
43%|████▎ | 13/30 [00:03<00:04, 3.47it/s]
47%|████▋ | 14/30 [00:04<00:04, 3.47it/s]
50%|█████ | 15/30 [00:04<00:04, 3.47it/s]
53%|█████▎ | 16/30 [00:04<00:04, 3.48it/s]
57%|█████▋ | 17/30 [00:04<00:03, 3.48it/s]
60%|██████ | 18/30 [00:05<00:03, 3.47it/s]
63%|██████▎ | 19/30 [00:05<00:03, 3.48it/s]
67%|██████▋ | 20/30 [00:05<00:02, 3.47it/s]
70%|███████ | 21/30 [00:06<00:02, 3.47it/s]
73%|███████▎ | 22/30 [00:06<00:02, 3.47it/s]
77%|███████▋ | 23/30 [00:06<00:02, 3.48it/s]
80%|████████ | 24/30 [00:06<00:01, 3.47it/s]
83%|████████▎ | 25/30 [00:07<00:01, 3.47it/s]
87%|████████▋ | 26/30 [00:07<00:01, 3.47it/s]
90%|█████████ | 27/30 [00:07<00:00, 3.47it/s]
93%|█████████▎| 28/30 [00:08<00:00, 3.47it/s]
97%|█████████▋| 29/30 [00:08<00:00, 3.47it/s]
100%|██████████| 30/30 [00:08<00:00, 3.47it/s]
100%|██████████| 30/30 [00:08<00:00, 3.47it/s]