meghabyte
/
arrival-logograms
Generates logograms in the style of the alien language from the 2016 sci-fi film "Arrival".
- Public
- 1.4K runs
-
L40S
- SDXL fine-tune
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580IDqg8zk2wk59rgp0chge1sk33r94StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedby @meghabyteInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of life
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 25
{ "width": 1024, "height": 1024, "prompt": "A logogram of life", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of life", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 25 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of life", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of life", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:32:33.545971Z", "created_at": "2024-08-24T08:32:03.882000Z", "data_removed": false, "error": null, "id": "qg8zk2wk59rgp0chge1sk33r94", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of life", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }, "logs": "Using seed: 26544\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A <s0><s1> of life\ntxt2img mode\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:05, 4.31it/s]\n 8%|▊ | 2/25 [00:00<00:05, 4.30it/s]\n 12%|█▏ | 3/25 [00:00<00:05, 4.29it/s]\n 16%|█▌ | 4/25 [00:00<00:04, 4.28it/s]\n 20%|██ | 5/25 [00:01<00:04, 4.27it/s]\n 24%|██▍ | 6/25 [00:01<00:04, 4.26it/s]\n 28%|██▊ | 7/25 [00:01<00:04, 4.26it/s]\n 32%|███▏ | 8/25 [00:01<00:03, 4.26it/s]\n 36%|███▌ | 9/25 [00:02<00:03, 4.25it/s]\n 40%|████ | 10/25 [00:02<00:03, 4.25it/s]\n 44%|████▍ | 11/25 [00:02<00:03, 4.25it/s]\n 48%|████▊ | 12/25 [00:02<00:03, 4.25it/s]\n 52%|█████▏ | 13/25 [00:03<00:02, 4.25it/s]\n 56%|█████▌ | 14/25 [00:03<00:02, 4.24it/s]\n 60%|██████ | 15/25 [00:03<00:02, 4.24it/s]\n 64%|██████▍ | 16/25 [00:03<00:02, 4.23it/s]\n 68%|██████▊ | 17/25 [00:04<00:01, 4.22it/s]\n 72%|███████▏ | 18/25 [00:04<00:01, 4.22it/s]\n 76%|███████▌ | 19/25 [00:04<00:01, 4.23it/s]\n 80%|████████ | 20/25 [00:04<00:01, 4.24it/s]\n 84%|████████▍ | 21/25 [00:04<00:00, 4.24it/s]\n 88%|████████▊ | 22/25 [00:05<00:00, 4.24it/s]\n 92%|█████████▏| 23/25 [00:05<00:00, 4.23it/s]\n 96%|█████████▌| 24/25 [00:05<00:00, 4.23it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.23it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.25it/s]", "metrics": { "predict_time": 10.241558666, "total_time": 29.663971 }, "output": [ "https://replicate.delivery/pbxt/2j8SHwy48v4qIVh92UkLkugVOVpLDSVW1ZVQOrTaaACoMd1E/out-0.png" ], "started_at": "2024-08-24T08:32:23.304412Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qg8zk2wk59rgp0chge1sk33r94", "cancel": "https://api.replicate.com/v1/predictions/qg8zk2wk59rgp0chge1sk33r94/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 26544 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A <s0><s1> of life txt2img mode 0%| | 0/25 [00:00<?, ?it/s] 4%|▍ | 1/25 [00:00<00:05, 4.31it/s] 8%|▊ | 2/25 [00:00<00:05, 4.30it/s] 12%|█▏ | 3/25 [00:00<00:05, 4.29it/s] 16%|█▌ | 4/25 [00:00<00:04, 4.28it/s] 20%|██ | 5/25 [00:01<00:04, 4.27it/s] 24%|██▍ | 6/25 [00:01<00:04, 4.26it/s] 28%|██▊ | 7/25 [00:01<00:04, 4.26it/s] 32%|███▏ | 8/25 [00:01<00:03, 4.26it/s] 36%|███▌ | 9/25 [00:02<00:03, 4.25it/s] 40%|████ | 10/25 [00:02<00:03, 4.25it/s] 44%|████▍ | 11/25 [00:02<00:03, 4.25it/s] 48%|████▊ | 12/25 [00:02<00:03, 4.25it/s] 52%|█████▏ | 13/25 [00:03<00:02, 4.25it/s] 56%|█████▌ | 14/25 [00:03<00:02, 4.24it/s] 60%|██████ | 15/25 [00:03<00:02, 4.24it/s] 64%|██████▍ | 16/25 [00:03<00:02, 4.23it/s] 68%|██████▊ | 17/25 [00:04<00:01, 4.22it/s] 72%|███████▏ | 18/25 [00:04<00:01, 4.22it/s] 76%|███████▌ | 19/25 [00:04<00:01, 4.23it/s] 80%|████████ | 20/25 [00:04<00:01, 4.24it/s] 84%|████████▍ | 21/25 [00:04<00:00, 4.24it/s] 88%|████████▊ | 22/25 [00:05<00:00, 4.24it/s] 92%|█████████▏| 23/25 [00:05<00:00, 4.23it/s] 96%|█████████▌| 24/25 [00:05<00:00, 4.23it/s] 100%|██████████| 25/25 [00:05<00:00, 4.23it/s] 100%|██████████| 25/25 [00:05<00:00, 4.25it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580IDdp734s8xasrgp0chge4smb2mkmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of creativity
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "A logogram of creativity", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of creativity", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of creativity", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of creativity", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:38:29.199386Z", "created_at": "2024-08-24T08:38:06.934000Z", "data_removed": false, "error": null, "id": "dp734s8xasrgp0chge4smb2mkm", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of creativity", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 1452\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A <s0><s1> of creativity\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:11, 4.26it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.25it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.24it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.24it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.24it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.24it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.25it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.25it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.25it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.26it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.26it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.26it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.26it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.26it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.26it/s]\n 32%|███▏ | 16/50 [00:03<00:07, 4.26it/s]\n 34%|███▍ | 17/50 [00:03<00:07, 4.26it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.25it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.25it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.26it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.26it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.25it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.25it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.26it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.26it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.25it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.25it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.25it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.25it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.25it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.25it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.25it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.25it/s]\n 68%|██████▊ | 34/50 [00:07<00:03, 4.25it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.25it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.25it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.25it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.25it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.25it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.25it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.24it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.24it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.25it/s]", "metrics": { "predict_time": 16.003729808, "total_time": 22.265386 }, "output": [ "https://replicate.delivery/pbxt/JXpYiWG1kyo8PJfQ427rLkh8dwLkrAl4aDFwqnJ6j14Bc6qJA/out-0.png" ], "started_at": "2024-08-24T08:38:13.195656Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/dp734s8xasrgp0chge4smb2mkm", "cancel": "https://api.replicate.com/v1/predictions/dp734s8xasrgp0chge4smb2mkm/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 1452 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A <s0><s1> of creativity txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:11, 4.26it/s] 4%|▍ | 2/50 [00:00<00:11, 4.25it/s] 6%|▌ | 3/50 [00:00<00:11, 4.24it/s] 8%|▊ | 4/50 [00:00<00:10, 4.24it/s] 10%|█ | 5/50 [00:01<00:10, 4.24it/s] 12%|█▏ | 6/50 [00:01<00:10, 4.24it/s] 14%|█▍ | 7/50 [00:01<00:10, 4.25it/s] 16%|█▌ | 8/50 [00:01<00:09, 4.25it/s] 18%|█▊ | 9/50 [00:02<00:09, 4.25it/s] 20%|██ | 10/50 [00:02<00:09, 4.26it/s] 22%|██▏ | 11/50 [00:02<00:09, 4.26it/s] 24%|██▍ | 12/50 [00:02<00:08, 4.26it/s] 26%|██▌ | 13/50 [00:03<00:08, 4.26it/s] 28%|██▊ | 14/50 [00:03<00:08, 4.26it/s] 30%|███ | 15/50 [00:03<00:08, 4.26it/s] 32%|███▏ | 16/50 [00:03<00:07, 4.26it/s] 34%|███▍ | 17/50 [00:03<00:07, 4.26it/s] 36%|███▌ | 18/50 [00:04<00:07, 4.25it/s] 38%|███▊ | 19/50 [00:04<00:07, 4.25it/s] 40%|████ | 20/50 [00:04<00:07, 4.26it/s] 42%|████▏ | 21/50 [00:04<00:06, 4.26it/s] 44%|████▍ | 22/50 [00:05<00:06, 4.25it/s] 46%|████▌ | 23/50 [00:05<00:06, 4.25it/s] 48%|████▊ | 24/50 [00:05<00:06, 4.26it/s] 50%|█████ | 25/50 [00:05<00:05, 4.26it/s] 52%|█████▏ | 26/50 [00:06<00:05, 4.25it/s] 54%|█████▍ | 27/50 [00:06<00:05, 4.25it/s] 56%|█████▌ | 28/50 [00:06<00:05, 4.25it/s] 58%|█████▊ | 29/50 [00:06<00:04, 4.25it/s] 60%|██████ | 30/50 [00:07<00:04, 4.25it/s] 62%|██████▏ | 31/50 [00:07<00:04, 4.25it/s] 64%|██████▍ | 32/50 [00:07<00:04, 4.25it/s] 66%|██████▌ | 33/50 [00:07<00:03, 4.25it/s] 68%|██████▊ | 34/50 [00:07<00:03, 4.25it/s] 70%|███████ | 35/50 [00:08<00:03, 4.25it/s] 72%|███████▏ | 36/50 [00:08<00:03, 4.25it/s] 74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s] 76%|███████▌ | 38/50 [00:08<00:02, 4.25it/s] 78%|███████▊ | 39/50 [00:09<00:02, 4.25it/s] 80%|████████ | 40/50 [00:09<00:02, 4.25it/s] 82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s] 84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s] 86%|████████▌ | 43/50 [00:10<00:01, 4.25it/s] 88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s] 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s] 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s] 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s] 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s] 98%|█████████▊| 49/50 [00:11<00:00, 4.24it/s] 100%|██████████| 50/50 [00:11<00:00, 4.24it/s] 100%|██████████| 50/50 [00:11<00:00, 4.25it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580IDnv7g7gkhhdrgg0chge3vz6x7d8StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of love
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 25
{ "width": 1024, "height": 1024, "prompt": "A logogram of love", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of love", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 25 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of love", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of love", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:36:25.612408Z", "created_at": "2024-08-24T08:36:17.419000Z", "data_removed": false, "error": null, "id": "nv7g7gkhhdrgg0chge3vz6x7d8", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of love", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }, "logs": "Using seed: 13636\nskipping loading .. weights already loaded\nPrompt: A <s0><s1> of love\ntxt2img mode\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:05, 4.30it/s]\n 8%|▊ | 2/25 [00:00<00:05, 4.28it/s]\n 12%|█▏ | 3/25 [00:00<00:05, 4.26it/s]\n 16%|█▌ | 4/25 [00:00<00:04, 4.25it/s]\n 20%|██ | 5/25 [00:01<00:04, 4.25it/s]\n 24%|██▍ | 6/25 [00:01<00:04, 4.25it/s]\n 28%|██▊ | 7/25 [00:01<00:04, 4.25it/s]\n 32%|███▏ | 8/25 [00:01<00:04, 4.25it/s]\n 36%|███▌ | 9/25 [00:02<00:03, 4.25it/s]\n 40%|████ | 10/25 [00:02<00:03, 4.25it/s]\n 44%|████▍ | 11/25 [00:02<00:03, 4.24it/s]\n 48%|████▊ | 12/25 [00:02<00:03, 4.24it/s]\n 52%|█████▏ | 13/25 [00:03<00:02, 4.24it/s]\n 56%|█████▌ | 14/25 [00:03<00:02, 4.24it/s]\n 60%|██████ | 15/25 [00:03<00:02, 4.25it/s]\n 64%|██████▍ | 16/25 [00:03<00:02, 4.24it/s]\n 68%|██████▊ | 17/25 [00:04<00:01, 4.24it/s]\n 72%|███████▏ | 18/25 [00:04<00:01, 4.24it/s]\n 76%|███████▌ | 19/25 [00:04<00:01, 4.24it/s]\n 80%|████████ | 20/25 [00:04<00:01, 4.23it/s]\n 84%|████████▍ | 21/25 [00:04<00:00, 4.24it/s]\n 88%|████████▊ | 22/25 [00:05<00:00, 4.24it/s]\n 92%|█████████▏| 23/25 [00:05<00:00, 4.24it/s]\n 96%|█████████▌| 24/25 [00:05<00:00, 4.24it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.24it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.24it/s]", "metrics": { "predict_time": 8.153859112, "total_time": 8.193408 }, "output": [ "https://replicate.delivery/pbxt/Qllq2r49Ki57JN7ZGbGCaozdAmJKfPCfC0XZckk8m2xI20VTA/out-0.png" ], "started_at": "2024-08-24T08:36:17.458548Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nv7g7gkhhdrgg0chge3vz6x7d8", "cancel": "https://api.replicate.com/v1/predictions/nv7g7gkhhdrgg0chge3vz6x7d8/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 13636 skipping loading .. weights already loaded Prompt: A <s0><s1> of love txt2img mode 0%| | 0/25 [00:00<?, ?it/s] 4%|▍ | 1/25 [00:00<00:05, 4.30it/s] 8%|▊ | 2/25 [00:00<00:05, 4.28it/s] 12%|█▏ | 3/25 [00:00<00:05, 4.26it/s] 16%|█▌ | 4/25 [00:00<00:04, 4.25it/s] 20%|██ | 5/25 [00:01<00:04, 4.25it/s] 24%|██▍ | 6/25 [00:01<00:04, 4.25it/s] 28%|██▊ | 7/25 [00:01<00:04, 4.25it/s] 32%|███▏ | 8/25 [00:01<00:04, 4.25it/s] 36%|███▌ | 9/25 [00:02<00:03, 4.25it/s] 40%|████ | 10/25 [00:02<00:03, 4.25it/s] 44%|████▍ | 11/25 [00:02<00:03, 4.24it/s] 48%|████▊ | 12/25 [00:02<00:03, 4.24it/s] 52%|█████▏ | 13/25 [00:03<00:02, 4.24it/s] 56%|█████▌ | 14/25 [00:03<00:02, 4.24it/s] 60%|██████ | 15/25 [00:03<00:02, 4.25it/s] 64%|██████▍ | 16/25 [00:03<00:02, 4.24it/s] 68%|██████▊ | 17/25 [00:04<00:01, 4.24it/s] 72%|███████▏ | 18/25 [00:04<00:01, 4.24it/s] 76%|███████▌ | 19/25 [00:04<00:01, 4.24it/s] 80%|████████ | 20/25 [00:04<00:01, 4.23it/s] 84%|████████▍ | 21/25 [00:04<00:00, 4.24it/s] 88%|████████▊ | 22/25 [00:05<00:00, 4.24it/s] 92%|█████████▏| 23/25 [00:05<00:00, 4.24it/s] 96%|█████████▌| 24/25 [00:05<00:00, 4.24it/s] 100%|██████████| 25/25 [00:05<00:00, 4.24it/s] 100%|██████████| 25/25 [00:05<00:00, 4.24it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580IDnbx9vn6mvxrgj0chge3rfk36bmStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of poetry
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 25
{ "width": 1024, "height": 1024, "prompt": "A logogram of poetry", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of poetry", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 25 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of poetry", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of poetry", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:36:52.125838Z", "created_at": "2024-08-24T08:36:42.847000Z", "data_removed": false, "error": null, "id": "nbx9vn6mvxrgj0chge3rfk36bm", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of poetry", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 25 }, "logs": "Using seed: 5587\nskipping loading .. weights already loaded\nPrompt: A <s0><s1> of poetry\ntxt2img mode\n 0%| | 0/25 [00:00<?, ?it/s]\n 4%|▍ | 1/25 [00:00<00:05, 4.29it/s]\n 8%|▊ | 2/25 [00:00<00:05, 4.28it/s]\n 12%|█▏ | 3/25 [00:00<00:05, 4.27it/s]\n 16%|█▌ | 4/25 [00:00<00:04, 4.26it/s]\n 20%|██ | 5/25 [00:01<00:04, 4.24it/s]\n 24%|██▍ | 6/25 [00:01<00:04, 4.24it/s]\n 28%|██▊ | 7/25 [00:01<00:04, 4.24it/s]\n 32%|███▏ | 8/25 [00:01<00:04, 4.24it/s]\n 36%|███▌ | 9/25 [00:02<00:03, 4.24it/s]\n 40%|████ | 10/25 [00:02<00:03, 4.23it/s]\n 44%|████▍ | 11/25 [00:02<00:03, 4.23it/s]\n 48%|████▊ | 12/25 [00:02<00:03, 4.24it/s]\n 52%|█████▏ | 13/25 [00:03<00:02, 4.23it/s]\n 56%|█████▌ | 14/25 [00:03<00:02, 4.23it/s]\n 60%|██████ | 15/25 [00:03<00:02, 4.23it/s]\n 64%|██████▍ | 16/25 [00:03<00:02, 4.23it/s]\n 68%|██████▊ | 17/25 [00:04<00:01, 4.23it/s]\n 72%|███████▏ | 18/25 [00:04<00:01, 4.23it/s]\n 76%|███████▌ | 19/25 [00:04<00:01, 4.23it/s]\n 80%|████████ | 20/25 [00:04<00:01, 4.23it/s]\n 84%|████████▍ | 21/25 [00:04<00:00, 4.23it/s]\n 88%|████████▊ | 22/25 [00:05<00:00, 4.23it/s]\n 92%|█████████▏| 23/25 [00:05<00:00, 4.24it/s]\n 96%|█████████▌| 24/25 [00:05<00:00, 4.23it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.24it/s]\n100%|██████████| 25/25 [00:05<00:00, 4.24it/s]", "metrics": { "predict_time": 8.231482463, "total_time": 9.278838 }, "output": [ "https://replicate.delivery/pbxt/O5Q3A5owf9SzFinzAbeKEHdrJVzSiDIKyh0Um2xmdwWi20VTA/out-0.png" ], "started_at": "2024-08-24T08:36:43.894356Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/nbx9vn6mvxrgj0chge3rfk36bm", "cancel": "https://api.replicate.com/v1/predictions/nbx9vn6mvxrgj0chge3rfk36bm/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 5587 skipping loading .. weights already loaded Prompt: A <s0><s1> of poetry txt2img mode 0%| | 0/25 [00:00<?, ?it/s] 4%|▍ | 1/25 [00:00<00:05, 4.29it/s] 8%|▊ | 2/25 [00:00<00:05, 4.28it/s] 12%|█▏ | 3/25 [00:00<00:05, 4.27it/s] 16%|█▌ | 4/25 [00:00<00:04, 4.26it/s] 20%|██ | 5/25 [00:01<00:04, 4.24it/s] 24%|██▍ | 6/25 [00:01<00:04, 4.24it/s] 28%|██▊ | 7/25 [00:01<00:04, 4.24it/s] 32%|███▏ | 8/25 [00:01<00:04, 4.24it/s] 36%|███▌ | 9/25 [00:02<00:03, 4.24it/s] 40%|████ | 10/25 [00:02<00:03, 4.23it/s] 44%|████▍ | 11/25 [00:02<00:03, 4.23it/s] 48%|████▊ | 12/25 [00:02<00:03, 4.24it/s] 52%|█████▏ | 13/25 [00:03<00:02, 4.23it/s] 56%|█████▌ | 14/25 [00:03<00:02, 4.23it/s] 60%|██████ | 15/25 [00:03<00:02, 4.23it/s] 64%|██████▍ | 16/25 [00:03<00:02, 4.23it/s] 68%|██████▊ | 17/25 [00:04<00:01, 4.23it/s] 72%|███████▏ | 18/25 [00:04<00:01, 4.23it/s] 76%|███████▌ | 19/25 [00:04<00:01, 4.23it/s] 80%|████████ | 20/25 [00:04<00:01, 4.23it/s] 84%|████████▍ | 21/25 [00:04<00:00, 4.23it/s] 88%|████████▊ | 22/25 [00:05<00:00, 4.23it/s] 92%|█████████▏| 23/25 [00:05<00:00, 4.24it/s] 96%|█████████▌| 24/25 [00:05<00:00, 4.23it/s] 100%|██████████| 25/25 [00:05<00:00, 4.24it/s] 100%|██████████| 25/25 [00:05<00:00, 4.24it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580IDqrfmjsmavhrgj0chge48fjw0rcStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of resilience
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "A logogram of resilience", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of resilience", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of resilience", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of resilience", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:37:43.592176Z", "created_at": "2024-08-24T08:37:29.436000Z", "data_removed": false, "error": null, "id": "qrfmjsmavhrgj0chge48fjw0rc", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of resilience", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 18920\nskipping loading .. weights already loaded\nPrompt: A <s0><s1> of resilience\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:11, 4.29it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.27it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.27it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.25it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.24it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.25it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.24it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.24it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.23it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.23it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.23it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.24it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.25it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.25it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.25it/s]\n 32%|███▏ | 16/50 [00:03<00:07, 4.26it/s]\n 34%|███▍ | 17/50 [00:04<00:07, 4.26it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.25it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.26it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.25it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.26it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.25it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.25it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.25it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.25it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.25it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.25it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.25it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.25it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.25it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.25it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.25it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.25it/s]\n 68%|██████▊ | 34/50 [00:07<00:03, 4.25it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.25it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.25it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.26it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.25it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.25it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.25it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.25it/s]", "metrics": { "predict_time": 14.11711778, "total_time": 14.156176 }, "output": [ "https://replicate.delivery/pbxt/stuP5ff7wUgR8UQC4JBNPUWSpdXkozaD6CZdmaXiNq7W30VTA/out-0.png" ], "started_at": "2024-08-24T08:37:29.475059Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/qrfmjsmavhrgj0chge48fjw0rc", "cancel": "https://api.replicate.com/v1/predictions/qrfmjsmavhrgj0chge48fjw0rc/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 18920 skipping loading .. weights already loaded Prompt: A <s0><s1> of resilience txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:11, 4.29it/s] 4%|▍ | 2/50 [00:00<00:11, 4.27it/s] 6%|▌ | 3/50 [00:00<00:11, 4.27it/s] 8%|▊ | 4/50 [00:00<00:10, 4.25it/s] 10%|█ | 5/50 [00:01<00:10, 4.24it/s] 12%|█▏ | 6/50 [00:01<00:10, 4.25it/s] 14%|█▍ | 7/50 [00:01<00:10, 4.24it/s] 16%|█▌ | 8/50 [00:01<00:09, 4.24it/s] 18%|█▊ | 9/50 [00:02<00:09, 4.23it/s] 20%|██ | 10/50 [00:02<00:09, 4.23it/s] 22%|██▏ | 11/50 [00:02<00:09, 4.23it/s] 24%|██▍ | 12/50 [00:02<00:08, 4.24it/s] 26%|██▌ | 13/50 [00:03<00:08, 4.25it/s] 28%|██▊ | 14/50 [00:03<00:08, 4.25it/s] 30%|███ | 15/50 [00:03<00:08, 4.25it/s] 32%|███▏ | 16/50 [00:03<00:07, 4.26it/s] 34%|███▍ | 17/50 [00:04<00:07, 4.26it/s] 36%|███▌ | 18/50 [00:04<00:07, 4.25it/s] 38%|███▊ | 19/50 [00:04<00:07, 4.26it/s] 40%|████ | 20/50 [00:04<00:07, 4.25it/s] 42%|████▏ | 21/50 [00:04<00:06, 4.26it/s] 44%|████▍ | 22/50 [00:05<00:06, 4.25it/s] 46%|████▌ | 23/50 [00:05<00:06, 4.25it/s] 48%|████▊ | 24/50 [00:05<00:06, 4.25it/s] 50%|█████ | 25/50 [00:05<00:05, 4.25it/s] 52%|█████▏ | 26/50 [00:06<00:05, 4.25it/s] 54%|█████▍ | 27/50 [00:06<00:05, 4.25it/s] 56%|█████▌ | 28/50 [00:06<00:05, 4.25it/s] 58%|█████▊ | 29/50 [00:06<00:04, 4.25it/s] 60%|██████ | 30/50 [00:07<00:04, 4.25it/s] 62%|██████▏ | 31/50 [00:07<00:04, 4.25it/s] 64%|██████▍ | 32/50 [00:07<00:04, 4.25it/s] 66%|██████▌ | 33/50 [00:07<00:03, 4.25it/s] 68%|██████▊ | 34/50 [00:07<00:03, 4.25it/s] 70%|███████ | 35/50 [00:08<00:03, 4.25it/s] 72%|███████▏ | 36/50 [00:08<00:03, 4.25it/s] 74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s] 76%|███████▌ | 38/50 [00:08<00:02, 4.26it/s] 78%|███████▊ | 39/50 [00:09<00:02, 4.25it/s] 80%|████████ | 40/50 [00:09<00:02, 4.25it/s] 82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s] 84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s] 86%|████████▌ | 43/50 [00:10<00:01, 4.25it/s] 88%|████████▊ | 44/50 [00:10<00:01, 4.25it/s] 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s] 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s] 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s] 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s] 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s] 100%|██████████| 50/50 [00:11<00:00, 4.25it/s] 100%|██████████| 50/50 [00:11<00:00, 4.25it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580ID16srq4kem1rgm0chge5v18xbk0StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of happiness
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "A logogram of happiness", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of happiness", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of happiness", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of happiness", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:41:12.079036Z", "created_at": "2024-08-24T08:40:38.816000Z", "data_removed": false, "error": null, "id": "16srq4kem1rgm0chge5v18xbk0", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of happiness", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 27019\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A <s0><s1> of happiness\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:11, 4.31it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.29it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.27it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.26it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.27it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.26it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.26it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.26it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.27it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.27it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.28it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.28it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.28it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.28it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.28it/s]\n 32%|███▏ | 16/50 [00:03<00:07, 4.28it/s]\n 34%|███▍ | 17/50 [00:03<00:07, 4.28it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.28it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.27it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.27it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.27it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.27it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.27it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.27it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.27it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.27it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.27it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.27it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.27it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.27it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.27it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.27it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.27it/s]\n 68%|██████▊ | 34/50 [00:07<00:03, 4.27it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.27it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.27it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.27it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.27it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.27it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.27it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.27it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.27it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.27it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.27it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.27it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.27it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.26it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.26it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.26it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.27it/s]", "metrics": { "predict_time": 15.976205971, "total_time": 33.263036 }, "output": [ "https://replicate.delivery/pbxt/ckX6RLJdefqCBkXpg2IYLw42ZXeXQNGiy4DQ7T6X2gMN1prmA/out-0.png" ], "started_at": "2024-08-24T08:40:56.102830Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/16srq4kem1rgm0chge5v18xbk0", "cancel": "https://api.replicate.com/v1/predictions/16srq4kem1rgm0chge5v18xbk0/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 27019 Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A <s0><s1> of happiness txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:11, 4.31it/s] 4%|▍ | 2/50 [00:00<00:11, 4.29it/s] 6%|▌ | 3/50 [00:00<00:11, 4.27it/s] 8%|▊ | 4/50 [00:00<00:10, 4.26it/s] 10%|█ | 5/50 [00:01<00:10, 4.27it/s] 12%|█▏ | 6/50 [00:01<00:10, 4.26it/s] 14%|█▍ | 7/50 [00:01<00:10, 4.26it/s] 16%|█▌ | 8/50 [00:01<00:09, 4.26it/s] 18%|█▊ | 9/50 [00:02<00:09, 4.27it/s] 20%|██ | 10/50 [00:02<00:09, 4.27it/s] 22%|██▏ | 11/50 [00:02<00:09, 4.28it/s] 24%|██▍ | 12/50 [00:02<00:08, 4.28it/s] 26%|██▌ | 13/50 [00:03<00:08, 4.28it/s] 28%|██▊ | 14/50 [00:03<00:08, 4.28it/s] 30%|███ | 15/50 [00:03<00:08, 4.28it/s] 32%|███▏ | 16/50 [00:03<00:07, 4.28it/s] 34%|███▍ | 17/50 [00:03<00:07, 4.28it/s] 36%|███▌ | 18/50 [00:04<00:07, 4.28it/s] 38%|███▊ | 19/50 [00:04<00:07, 4.27it/s] 40%|████ | 20/50 [00:04<00:07, 4.27it/s] 42%|████▏ | 21/50 [00:04<00:06, 4.27it/s] 44%|████▍ | 22/50 [00:05<00:06, 4.27it/s] 46%|████▌ | 23/50 [00:05<00:06, 4.27it/s] 48%|████▊ | 24/50 [00:05<00:06, 4.27it/s] 50%|█████ | 25/50 [00:05<00:05, 4.27it/s] 52%|█████▏ | 26/50 [00:06<00:05, 4.27it/s] 54%|█████▍ | 27/50 [00:06<00:05, 4.27it/s] 56%|█████▌ | 28/50 [00:06<00:05, 4.27it/s] 58%|█████▊ | 29/50 [00:06<00:04, 4.27it/s] 60%|██████ | 30/50 [00:07<00:04, 4.27it/s] 62%|██████▏ | 31/50 [00:07<00:04, 4.27it/s] 64%|██████▍ | 32/50 [00:07<00:04, 4.27it/s] 66%|██████▌ | 33/50 [00:07<00:03, 4.27it/s] 68%|██████▊ | 34/50 [00:07<00:03, 4.27it/s] 70%|███████ | 35/50 [00:08<00:03, 4.27it/s] 72%|███████▏ | 36/50 [00:08<00:03, 4.27it/s] 74%|███████▍ | 37/50 [00:08<00:03, 4.27it/s] 76%|███████▌ | 38/50 [00:08<00:02, 4.27it/s] 78%|███████▊ | 39/50 [00:09<00:02, 4.27it/s] 80%|████████ | 40/50 [00:09<00:02, 4.27it/s] 82%|████████▏ | 41/50 [00:09<00:02, 4.27it/s] 84%|████████▍ | 42/50 [00:09<00:01, 4.27it/s] 86%|████████▌ | 43/50 [00:10<00:01, 4.27it/s] 88%|████████▊ | 44/50 [00:10<00:01, 4.27it/s] 90%|█████████ | 45/50 [00:10<00:01, 4.27it/s] 92%|█████████▏| 46/50 [00:10<00:00, 4.27it/s] 94%|█████████▍| 47/50 [00:11<00:00, 4.27it/s] 96%|█████████▌| 48/50 [00:11<00:00, 4.26it/s] 98%|█████████▊| 49/50 [00:11<00:00, 4.26it/s] 100%|██████████| 50/50 [00:11<00:00, 4.26it/s] 100%|██████████| 50/50 [00:11<00:00, 4.27it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580IDjqarca8qaxrgj0chge6b22d1ewStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of grief
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "A logogram of grief", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of grief", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of grief", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of grief", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:41:36.176826Z", "created_at": "2024-08-24T08:41:22.007000Z", "data_removed": false, "error": null, "id": "jqarca8qaxrgj0chge6b22d1ew", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of grief", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 57698\nskipping loading .. weights already loaded\nPrompt: A <s0><s1> of grief\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:11, 4.28it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.27it/s]\n 6%|▌ | 3/50 [00:00<00:11, 4.26it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.25it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.24it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.24it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.24it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.24it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.24it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.24it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.23it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.23it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.23it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.23it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.23it/s]\n 32%|███▏ | 16/50 [00:03<00:08, 4.23it/s]\n 34%|███▍ | 17/50 [00:04<00:07, 4.23it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.23it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.24it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.25it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.25it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.25it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.25it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.25it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.25it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.26it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.26it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.26it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.26it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.26it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.26it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.26it/s]\n 66%|██████▌ | 33/50 [00:07<00:03, 4.25it/s]\n 68%|██████▊ | 34/50 [00:08<00:03, 4.25it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.25it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.26it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.25it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.25it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.26it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.26it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.25it/s]", "metrics": { "predict_time": 14.129051695, "total_time": 14.169826 }, "output": [ "https://replicate.delivery/pbxt/e9jlfG1BAKqHqE5m3yJrFZE1OvAMhJFLesnqdWSk9Uz81prmA/out-0.png" ], "started_at": "2024-08-24T08:41:22.047774Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jqarca8qaxrgj0chge6b22d1ew", "cancel": "https://api.replicate.com/v1/predictions/jqarca8qaxrgj0chge6b22d1ew/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 57698 skipping loading .. weights already loaded Prompt: A <s0><s1> of grief txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:11, 4.28it/s] 4%|▍ | 2/50 [00:00<00:11, 4.27it/s] 6%|▌ | 3/50 [00:00<00:11, 4.26it/s] 8%|▊ | 4/50 [00:00<00:10, 4.25it/s] 10%|█ | 5/50 [00:01<00:10, 4.24it/s] 12%|█▏ | 6/50 [00:01<00:10, 4.24it/s] 14%|█▍ | 7/50 [00:01<00:10, 4.24it/s] 16%|█▌ | 8/50 [00:01<00:09, 4.24it/s] 18%|█▊ | 9/50 [00:02<00:09, 4.24it/s] 20%|██ | 10/50 [00:02<00:09, 4.24it/s] 22%|██▏ | 11/50 [00:02<00:09, 4.23it/s] 24%|██▍ | 12/50 [00:02<00:08, 4.23it/s] 26%|██▌ | 13/50 [00:03<00:08, 4.23it/s] 28%|██▊ | 14/50 [00:03<00:08, 4.23it/s] 30%|███ | 15/50 [00:03<00:08, 4.23it/s] 32%|███▏ | 16/50 [00:03<00:08, 4.23it/s] 34%|███▍ | 17/50 [00:04<00:07, 4.23it/s] 36%|███▌ | 18/50 [00:04<00:07, 4.23it/s] 38%|███▊ | 19/50 [00:04<00:07, 4.24it/s] 40%|████ | 20/50 [00:04<00:07, 4.25it/s] 42%|████▏ | 21/50 [00:04<00:06, 4.25it/s] 44%|████▍ | 22/50 [00:05<00:06, 4.25it/s] 46%|████▌ | 23/50 [00:05<00:06, 4.25it/s] 48%|████▊ | 24/50 [00:05<00:06, 4.25it/s] 50%|█████ | 25/50 [00:05<00:05, 4.25it/s] 52%|█████▏ | 26/50 [00:06<00:05, 4.26it/s] 54%|█████▍ | 27/50 [00:06<00:05, 4.26it/s] 56%|█████▌ | 28/50 [00:06<00:05, 4.26it/s] 58%|█████▊ | 29/50 [00:06<00:04, 4.26it/s] 60%|██████ | 30/50 [00:07<00:04, 4.26it/s] 62%|██████▏ | 31/50 [00:07<00:04, 4.26it/s] 64%|██████▍ | 32/50 [00:07<00:04, 4.26it/s] 66%|██████▌ | 33/50 [00:07<00:03, 4.25it/s] 68%|██████▊ | 34/50 [00:08<00:03, 4.25it/s] 70%|███████ | 35/50 [00:08<00:03, 4.25it/s] 72%|███████▏ | 36/50 [00:08<00:03, 4.26it/s] 74%|███████▍ | 37/50 [00:08<00:03, 4.25it/s] 76%|███████▌ | 38/50 [00:08<00:02, 4.25it/s] 78%|███████▊ | 39/50 [00:09<00:02, 4.26it/s] 80%|████████ | 40/50 [00:09<00:02, 4.25it/s] 82%|████████▏ | 41/50 [00:09<00:02, 4.25it/s] 84%|████████▍ | 42/50 [00:09<00:01, 4.25it/s] 86%|████████▌ | 43/50 [00:10<00:01, 4.26it/s] 88%|████████▊ | 44/50 [00:10<00:01, 4.26it/s] 90%|█████████ | 45/50 [00:10<00:01, 4.25it/s] 92%|█████████▏| 46/50 [00:10<00:00, 4.25it/s] 94%|█████████▍| 47/50 [00:11<00:00, 4.25it/s] 96%|█████████▌| 48/50 [00:11<00:00, 4.25it/s] 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s] 100%|██████████| 50/50 [00:11<00:00, 4.25it/s] 100%|██████████| 50/50 [00:11<00:00, 4.25it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580ID9wcrkpks9drgm0chge6rdckkf8StatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of fate
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "A logogram of fate", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of fate", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of fate", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of fate", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T08:43:09.148480Z", "created_at": "2024-08-24T08:42:52.619000Z", "data_removed": false, "error": null, "id": "9wcrkpks9drgm0chge6rdckkf8", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of fate", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 53803\nskipping loading .. weights already loaded\nPrompt: A <s0><s1> of fate\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]\n 2%|▏ | 1/50 [00:00<00:11, 4.32it/s]\n 4%|▍ | 2/50 [00:00<00:11, 4.29it/s]\n 6%|▌ | 3/50 [00:00<00:10, 4.28it/s]\n 8%|▊ | 4/50 [00:00<00:10, 4.27it/s]\n 10%|█ | 5/50 [00:01<00:10, 4.27it/s]\n 12%|█▏ | 6/50 [00:01<00:10, 4.26it/s]\n 14%|█▍ | 7/50 [00:01<00:10, 4.27it/s]\n 16%|█▌ | 8/50 [00:01<00:09, 4.26it/s]\n 18%|█▊ | 9/50 [00:02<00:09, 4.25it/s]\n 20%|██ | 10/50 [00:02<00:09, 4.25it/s]\n 22%|██▏ | 11/50 [00:02<00:09, 4.25it/s]\n 24%|██▍ | 12/50 [00:02<00:08, 4.25it/s]\n 26%|██▌ | 13/50 [00:03<00:08, 4.25it/s]\n 28%|██▊ | 14/50 [00:03<00:08, 4.25it/s]\n 30%|███ | 15/50 [00:03<00:08, 4.25it/s]\n 32%|███▏ | 16/50 [00:03<00:08, 4.24it/s]\n 34%|███▍ | 17/50 [00:03<00:07, 4.24it/s]\n 36%|███▌ | 18/50 [00:04<00:07, 4.24it/s]\n 38%|███▊ | 19/50 [00:04<00:07, 4.24it/s]\n 40%|████ | 20/50 [00:04<00:07, 4.24it/s]\n 42%|████▏ | 21/50 [00:04<00:06, 4.24it/s]\n 44%|████▍ | 22/50 [00:05<00:06, 4.24it/s]\n 46%|████▌ | 23/50 [00:05<00:06, 4.24it/s]\n 48%|████▊ | 24/50 [00:05<00:06, 4.24it/s]\n 50%|█████ | 25/50 [00:05<00:05, 4.24it/s]\n 52%|█████▏ | 26/50 [00:06<00:05, 4.24it/s]\n 54%|█████▍ | 27/50 [00:06<00:05, 4.24it/s]\n 56%|█████▌ | 28/50 [00:06<00:05, 4.24it/s]\n 58%|█████▊ | 29/50 [00:06<00:04, 4.24it/s]\n 60%|██████ | 30/50 [00:07<00:04, 4.24it/s]\n 62%|██████▏ | 31/50 [00:07<00:04, 4.24it/s]\n 64%|██████▍ | 32/50 [00:07<00:04, 4.24it/s]\n 66%|██████▌ | 33/50 [00:07<00:04, 4.23it/s]\n 68%|██████▊ | 34/50 [00:08<00:03, 4.23it/s]\n 70%|███████ | 35/50 [00:08<00:03, 4.23it/s]\n 72%|███████▏ | 36/50 [00:08<00:03, 4.23it/s]\n 74%|███████▍ | 37/50 [00:08<00:03, 4.23it/s]\n 76%|███████▌ | 38/50 [00:08<00:02, 4.24it/s]\n 78%|███████▊ | 39/50 [00:09<00:02, 4.23it/s]\n 80%|████████ | 40/50 [00:09<00:02, 4.23it/s]\n 82%|████████▏ | 41/50 [00:09<00:02, 4.24it/s]\n 84%|████████▍ | 42/50 [00:09<00:01, 4.24it/s]\n 86%|████████▌ | 43/50 [00:10<00:01, 4.24it/s]\n 88%|████████▊ | 44/50 [00:10<00:01, 4.23it/s]\n 90%|█████████ | 45/50 [00:10<00:01, 4.23it/s]\n 92%|█████████▏| 46/50 [00:10<00:00, 4.23it/s]\n 94%|█████████▍| 47/50 [00:11<00:00, 4.24it/s]\n 96%|█████████▌| 48/50 [00:11<00:00, 4.24it/s]\n 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.25it/s]\n100%|██████████| 50/50 [00:11<00:00, 4.24it/s]", "metrics": { "predict_time": 14.080628305, "total_time": 16.52948 }, "output": [ "https://replicate.delivery/pbxt/zuTBOkWdwT7zF9g3HE8w3VH57jhIxhZykSn3ZKEhVe5Ne0VTA/out-0.png" ], "started_at": "2024-08-24T08:42:55.067852Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/9wcrkpks9drgm0chge6rdckkf8", "cancel": "https://api.replicate.com/v1/predictions/9wcrkpks9drgm0chge6rdckkf8/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 53803 skipping loading .. weights already loaded Prompt: A <s0><s1> of fate txt2img mode 0%| | 0/50 [00:00<?, ?it/s] 2%|▏ | 1/50 [00:00<00:11, 4.32it/s] 4%|▍ | 2/50 [00:00<00:11, 4.29it/s] 6%|▌ | 3/50 [00:00<00:10, 4.28it/s] 8%|▊ | 4/50 [00:00<00:10, 4.27it/s] 10%|█ | 5/50 [00:01<00:10, 4.27it/s] 12%|█▏ | 6/50 [00:01<00:10, 4.26it/s] 14%|█▍ | 7/50 [00:01<00:10, 4.27it/s] 16%|█▌ | 8/50 [00:01<00:09, 4.26it/s] 18%|█▊ | 9/50 [00:02<00:09, 4.25it/s] 20%|██ | 10/50 [00:02<00:09, 4.25it/s] 22%|██▏ | 11/50 [00:02<00:09, 4.25it/s] 24%|██▍ | 12/50 [00:02<00:08, 4.25it/s] 26%|██▌ | 13/50 [00:03<00:08, 4.25it/s] 28%|██▊ | 14/50 [00:03<00:08, 4.25it/s] 30%|███ | 15/50 [00:03<00:08, 4.25it/s] 32%|███▏ | 16/50 [00:03<00:08, 4.24it/s] 34%|███▍ | 17/50 [00:03<00:07, 4.24it/s] 36%|███▌ | 18/50 [00:04<00:07, 4.24it/s] 38%|███▊ | 19/50 [00:04<00:07, 4.24it/s] 40%|████ | 20/50 [00:04<00:07, 4.24it/s] 42%|████▏ | 21/50 [00:04<00:06, 4.24it/s] 44%|████▍ | 22/50 [00:05<00:06, 4.24it/s] 46%|████▌ | 23/50 [00:05<00:06, 4.24it/s] 48%|████▊ | 24/50 [00:05<00:06, 4.24it/s] 50%|█████ | 25/50 [00:05<00:05, 4.24it/s] 52%|█████▏ | 26/50 [00:06<00:05, 4.24it/s] 54%|█████▍ | 27/50 [00:06<00:05, 4.24it/s] 56%|█████▌ | 28/50 [00:06<00:05, 4.24it/s] 58%|█████▊ | 29/50 [00:06<00:04, 4.24it/s] 60%|██████ | 30/50 [00:07<00:04, 4.24it/s] 62%|██████▏ | 31/50 [00:07<00:04, 4.24it/s] 64%|██████▍ | 32/50 [00:07<00:04, 4.24it/s] 66%|██████▌ | 33/50 [00:07<00:04, 4.23it/s] 68%|██████▊ | 34/50 [00:08<00:03, 4.23it/s] 70%|███████ | 35/50 [00:08<00:03, 4.23it/s] 72%|███████▏ | 36/50 [00:08<00:03, 4.23it/s] 74%|███████▍ | 37/50 [00:08<00:03, 4.23it/s] 76%|███████▌ | 38/50 [00:08<00:02, 4.24it/s] 78%|███████▊ | 39/50 [00:09<00:02, 4.23it/s] 80%|████████ | 40/50 [00:09<00:02, 4.23it/s] 82%|████████▏ | 41/50 [00:09<00:02, 4.24it/s] 84%|████████▍ | 42/50 [00:09<00:01, 4.24it/s] 86%|████████▌ | 43/50 [00:10<00:01, 4.24it/s] 88%|████████▊ | 44/50 [00:10<00:01, 4.23it/s] 90%|█████████ | 45/50 [00:10<00:01, 4.23it/s] 92%|█████████▏| 46/50 [00:10<00:00, 4.23it/s] 94%|█████████▍| 47/50 [00:11<00:00, 4.24it/s] 96%|█████████▌| 48/50 [00:11<00:00, 4.24it/s] 98%|█████████▊| 49/50 [00:11<00:00, 4.25it/s] 100%|██████████| 50/50 [00:11<00:00, 4.25it/s] 100%|██████████| 50/50 [00:11<00:00, 4.24it/s]
Prediction
meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580IDab5kkm63asrgp0chgrbtvfac1wStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- A logogram of anxiety about the future
- refine
- no_refiner
- scheduler
- K_EULER
- lora_scale
- 0.6
- num_outputs
- 1
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- negative_prompt
- prompt_strength
- 0.8
- num_inference_steps
- 50
{ "width": 1024, "height": 1024, "prompt": "A logogram of anxiety about the future", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", { input: { width: 1024, height: 1024, prompt: "A logogram of anxiety about the future", refine: "no_refiner", scheduler: "K_EULER", lora_scale: 0.6, num_outputs: 1, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, negative_prompt: "", prompt_strength: 0.8, num_inference_steps: 50 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "meghabyte/arrival-logograms:3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", input={ "width": 1024, "height": 1024, "prompt": "A logogram of anxiety about the future", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run meghabyte/arrival-logograms using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of anxiety about the future", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-24T20:34:56.914210Z", "created_at": "2024-08-24T20:33:09.974000Z", "data_removed": false, "error": null, "id": "ab5kkm63asrgp0chgrbtvfac1w", "input": { "width": 1024, "height": 1024, "prompt": "A logogram of anxiety about the future", "refine": "no_refiner", "scheduler": "K_EULER", "lora_scale": 0.6, "num_outputs": 1, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "negative_prompt": "", "prompt_strength": 0.8, "num_inference_steps": 50 }, "logs": "Using seed: 13696\nEnsuring enough disk space...\nFree disk space: 1925313560576\nDownloading weights: https://replicate.delivery/pbxt/h20ccZDnvm7bM5keC7r13QBr1ckShCmPpNJMkVIfTDL8n0VTA/trained_model.tar\n2024-08-24T20:34:28Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/2223247fbbe84188 url=https://replicate.delivery/pbxt/h20ccZDnvm7bM5keC7r13QBr1ckShCmPpNJMkVIfTDL8n0VTA/trained_model.tar\n2024-08-24T20:34:30Z | INFO | [ Complete ] dest=/src/weights-cache/2223247fbbe84188 size=\"186 MB\" total_elapsed=1.708s url=https://replicate.delivery/pbxt/h20ccZDnvm7bM5keC7r13QBr1ckShCmPpNJMkVIfTDL8n0VTA/trained_model.tar\nb''\nDownloaded weights in 1.840242624282837 seconds\nLoading fine-tuned model\nDoes not have Unet. assume we are using LoRA\nLoading Unet LoRA\nPrompt: A <s0><s1> of anxiety about the future\ntxt2img mode\n 0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.)\nreturn F.conv2d(input, weight, bias, self.stride,\n/usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights`\ndeprecate(\n 2%|▏ | 1/50 [00:01<01:01, 1.25s/it]\n 4%|▍ | 2/50 [00:01<00:31, 1.54it/s]\n 6%|▌ | 3/50 [00:01<00:21, 2.17it/s]\n 8%|▊ | 4/50 [00:01<00:17, 2.69it/s]\n 10%|█ | 5/50 [00:02<00:14, 3.10it/s]\n 12%|█▏ | 6/50 [00:02<00:12, 3.41it/s]\n 14%|█▍ | 7/50 [00:02<00:11, 3.64it/s]\n 16%|█▌ | 8/50 [00:02<00:11, 3.81it/s]\n 18%|█▊ | 9/50 [00:03<00:10, 3.94it/s]\n 20%|██ | 10/50 [00:03<00:09, 4.04it/s]\n 22%|██▏ | 11/50 [00:03<00:09, 4.10it/s]\n 24%|██▍ | 12/50 [00:03<00:09, 4.15it/s]\n 26%|██▌ | 13/50 [00:04<00:08, 4.18it/s]\n 28%|██▊ | 14/50 [00:04<00:08, 4.20it/s]\n 30%|███ | 15/50 [00:04<00:08, 4.21it/s]\n 32%|███▏ | 16/50 [00:04<00:08, 4.23it/s]\n 34%|███▍ | 17/50 [00:05<00:07, 4.24it/s]\n 36%|███▌ | 18/50 [00:05<00:07, 4.25it/s]\n 38%|███▊ | 19/50 [00:05<00:07, 4.26it/s]\n 40%|████ | 20/50 [00:05<00:07, 4.27it/s]\n 42%|████▏ | 21/50 [00:05<00:06, 4.27it/s]\n 44%|████▍ | 22/50 [00:06<00:06, 4.28it/s]\n 46%|████▌ | 23/50 [00:06<00:06, 4.28it/s]\n 48%|████▊ | 24/50 [00:06<00:06, 4.27it/s]\n 50%|█████ | 25/50 [00:06<00:05, 4.28it/s]\n 52%|█████▏ | 26/50 [00:07<00:05, 4.28it/s]\n 54%|█████▍ | 27/50 [00:07<00:05, 4.28it/s]\n 56%|█████▌ | 28/50 [00:07<00:05, 4.28it/s]\n 58%|█████▊ | 29/50 [00:07<00:04, 4.28it/s]\n 60%|██████ | 30/50 [00:08<00:04, 4.27it/s]\n 62%|██████▏ | 31/50 [00:08<00:04, 4.28it/s]\n 64%|██████▍ | 32/50 [00:08<00:04, 4.27it/s]\n 66%|██████▌ | 33/50 [00:08<00:03, 4.28it/s]\n 68%|██████▊ | 34/50 [00:08<00:03, 4.27it/s]\n 70%|███████ | 35/50 [00:09<00:03, 4.27it/s]\n 72%|███████▏ | 36/50 [00:09<00:03, 4.27it/s]\n 74%|███████▍ | 37/50 [00:09<00:03, 4.27it/s]\n 76%|███████▌ | 38/50 [00:09<00:02, 4.27it/s]\n 78%|███████▊ | 39/50 [00:10<00:02, 4.27it/s]\n 80%|████████ | 40/50 [00:10<00:02, 4.27it/s]\n 82%|████████▏ | 41/50 [00:10<00:02, 4.27it/s]\n 84%|████████▍ | 42/50 [00:10<00:01, 4.27it/s]\n 86%|████████▌ | 43/50 [00:11<00:01, 4.27it/s]\n 88%|████████▊ | 44/50 [00:11<00:01, 4.27it/s]\n 90%|█████████ | 45/50 [00:11<00:01, 4.27it/s]\n 92%|█████████▏| 46/50 [00:11<00:00, 4.27it/s]\n 94%|█████████▍| 47/50 [00:12<00:00, 4.27it/s]\n 96%|█████████▌| 48/50 [00:12<00:00, 4.27it/s]\n 98%|█████████▊| 49/50 [00:12<00:00, 4.27it/s]\n100%|██████████| 50/50 [00:12<00:00, 4.27it/s]\n100%|██████████| 50/50 [00:12<00:00, 3.93it/s]", "metrics": { "predict_time": 28.130986255, "total_time": 106.94021 }, "output": [ "https://replicate.delivery/pbxt/ELQbcj6CWAKBMhHMVHzmHF7abnXvo2XOW1sBHAqluSA81fqJA/out-0.png" ], "started_at": "2024-08-24T20:34:28.783223Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ab5kkm63asrgp0chgrbtvfac1w", "cancel": "https://api.replicate.com/v1/predictions/ab5kkm63asrgp0chgrbtvfac1w/cancel" }, "version": "3d58fdf66cb45c08fa5c66f7d59bf103b6e318a4f8220dd55221844885b1d580" }
Generated inUsing seed: 13696 Ensuring enough disk space... Free disk space: 1925313560576 Downloading weights: https://replicate.delivery/pbxt/h20ccZDnvm7bM5keC7r13QBr1ckShCmPpNJMkVIfTDL8n0VTA/trained_model.tar 2024-08-24T20:34:28Z | INFO | [ Initiating ] chunk_size=150M dest=/src/weights-cache/2223247fbbe84188 url=https://replicate.delivery/pbxt/h20ccZDnvm7bM5keC7r13QBr1ckShCmPpNJMkVIfTDL8n0VTA/trained_model.tar 2024-08-24T20:34:30Z | INFO | [ Complete ] dest=/src/weights-cache/2223247fbbe84188 size="186 MB" total_elapsed=1.708s url=https://replicate.delivery/pbxt/h20ccZDnvm7bM5keC7r13QBr1ckShCmPpNJMkVIfTDL8n0VTA/trained_model.tar b'' Downloaded weights in 1.840242624282837 seconds Loading fine-tuned model Does not have Unet. assume we are using LoRA Loading Unet LoRA Prompt: A <s0><s1> of anxiety about the future txt2img mode 0%| | 0/50 [00:00<?, ?it/s]/usr/local/lib/python3.9/site-packages/torch/nn/modules/conv.py:459: UserWarning: Applied workaround for CuDNN issue, install nvrtc.so (Triggered internally at ../aten/src/ATen/native/cudnn/Conv_v8.cpp:80.) return F.conv2d(input, weight, bias, self.stride, /usr/local/lib/python3.9/site-packages/diffusers/models/attention_processor.py:1946: FutureWarning: `LoRAAttnProcessor2_0` is deprecated and will be removed in version 0.26.0. Make sure use AttnProcessor2_0 instead by settingLoRA layers to `self.{to_q,to_k,to_v,to_out[0]}.lora_layer` respectively. This will be done automatically when using `LoraLoaderMixin.load_lora_weights` deprecate( 2%|▏ | 1/50 [00:01<01:01, 1.25s/it] 4%|▍ | 2/50 [00:01<00:31, 1.54it/s] 6%|▌ | 3/50 [00:01<00:21, 2.17it/s] 8%|▊ | 4/50 [00:01<00:17, 2.69it/s] 10%|█ | 5/50 [00:02<00:14, 3.10it/s] 12%|█▏ | 6/50 [00:02<00:12, 3.41it/s] 14%|█▍ | 7/50 [00:02<00:11, 3.64it/s] 16%|█▌ | 8/50 [00:02<00:11, 3.81it/s] 18%|█▊ | 9/50 [00:03<00:10, 3.94it/s] 20%|██ | 10/50 [00:03<00:09, 4.04it/s] 22%|██▏ | 11/50 [00:03<00:09, 4.10it/s] 24%|██▍ | 12/50 [00:03<00:09, 4.15it/s] 26%|██▌ | 13/50 [00:04<00:08, 4.18it/s] 28%|██▊ | 14/50 [00:04<00:08, 4.20it/s] 30%|███ | 15/50 [00:04<00:08, 4.21it/s] 32%|███▏ | 16/50 [00:04<00:08, 4.23it/s] 34%|███▍ | 17/50 [00:05<00:07, 4.24it/s] 36%|███▌ | 18/50 [00:05<00:07, 4.25it/s] 38%|███▊ | 19/50 [00:05<00:07, 4.26it/s] 40%|████ | 20/50 [00:05<00:07, 4.27it/s] 42%|████▏ | 21/50 [00:05<00:06, 4.27it/s] 44%|████▍ | 22/50 [00:06<00:06, 4.28it/s] 46%|████▌ | 23/50 [00:06<00:06, 4.28it/s] 48%|████▊ | 24/50 [00:06<00:06, 4.27it/s] 50%|█████ | 25/50 [00:06<00:05, 4.28it/s] 52%|█████▏ | 26/50 [00:07<00:05, 4.28it/s] 54%|█████▍ | 27/50 [00:07<00:05, 4.28it/s] 56%|█████▌ | 28/50 [00:07<00:05, 4.28it/s] 58%|█████▊ | 29/50 [00:07<00:04, 4.28it/s] 60%|██████ | 30/50 [00:08<00:04, 4.27it/s] 62%|██████▏ | 31/50 [00:08<00:04, 4.28it/s] 64%|██████▍ | 32/50 [00:08<00:04, 4.27it/s] 66%|██████▌ | 33/50 [00:08<00:03, 4.28it/s] 68%|██████▊ | 34/50 [00:08<00:03, 4.27it/s] 70%|███████ | 35/50 [00:09<00:03, 4.27it/s] 72%|███████▏ | 36/50 [00:09<00:03, 4.27it/s] 74%|███████▍ | 37/50 [00:09<00:03, 4.27it/s] 76%|███████▌ | 38/50 [00:09<00:02, 4.27it/s] 78%|███████▊ | 39/50 [00:10<00:02, 4.27it/s] 80%|████████ | 40/50 [00:10<00:02, 4.27it/s] 82%|████████▏ | 41/50 [00:10<00:02, 4.27it/s] 84%|████████▍ | 42/50 [00:10<00:01, 4.27it/s] 86%|████████▌ | 43/50 [00:11<00:01, 4.27it/s] 88%|████████▊ | 44/50 [00:11<00:01, 4.27it/s] 90%|█████████ | 45/50 [00:11<00:01, 4.27it/s] 92%|█████████▏| 46/50 [00:11<00:00, 4.27it/s] 94%|█████████▍| 47/50 [00:12<00:00, 4.27it/s] 96%|█████████▌| 48/50 [00:12<00:00, 4.27it/s] 98%|█████████▊| 49/50 [00:12<00:00, 4.27it/s] 100%|██████████| 50/50 [00:12<00:00, 4.27it/s] 100%|██████████| 50/50 [00:12<00:00, 3.93it/s]
Want to make some of these yourself?
Run this model