meta /llama-2-13b-chat:56acad22

Input

*string
Shift + Return to add a new line

Prompt to send to Llama v2.

integer
(minimum: 1)

Maximum number of tokens to generate. A word is generally 2-3 tokens

Default: 500

number
(minimum: 0.01, maximum: 5)

Adjusts randomness of outputs, greater than 1 is random and 0 is deterministic, 0.75 is a good starting value.

Default: 0.75

number
(minimum: 0.01, maximum: 1)

When decoding text, samples from the top p percentage of most likely tokens; lower to ignore less likely tokens

Default: 1

number
(minimum: 0.01, maximum: 5)

Penalty for repeated words in generated text; 1 is no penalty, values greater than 1 discourage repetition, less than 1 encourage it.

Default: 1

boolean

provide debugging output in logs

Default: false

Output

Sure! Here is the script you requested: ``` import torch from transformers import BertTokenizer, BertModel from transformers.training import Trainer from torch.utils.data import DataLoader from datasets import load_dataset # Load the IMDB dataset train_dataset = load_dataset("imdb", split="train") val_dataset = load_dataset("imdb", split="val") # Load the BERT model tokenizer = BertTokenizer.from_pretrained("bert-base-uncased") model = BertModel.from_pretrained("bert-base-uncased") # Define the training and validation dataloaders train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True) val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False) # Define the training arguments training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=32, per_device_eval_batch_size=32, evaluation_strategy="epoch", learning_rate=5e-5, save_total_limit=2, save_steps=500, load_best_model_at_end=True, metric_for_best_model="f1", greater_is_better=True, save_strategy="steps", save_on_each_node=True, ) # Train the model trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset, compute_metrics=lambda pred: {"f1": f1_score(y_true=pred.label_ids, y_pred=pred.predictions.argmax, average="macro")}, ) trainer.train() # Print the final trained model print(trainer.model) ``` To launch the script on the command line, you can use the following command: ``` python -m torch.distributed.launch training_bert_imdb.py --n_gpus 4 ``` This will launch the script on four GPUs. You can adjust the number of GPUs as needed. I hope this helps! Let me know if you have any questions.
Generated in