mistake0316 / style-transfer-clip
Guide Style Transfer with CLIP loss
- Public
- 1.3K runs
-
T4
- GitHub
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDyptuj4iqxvbjzgmgxm4pbs33kmStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- "0.01"
- text
- Leopard
- resize_flag
- optimize_steps
- 200
- output_aug_flag
- output_aug_time
- 16
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": "0.01", "text": "Leopard", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 200, "output_aug_flag": true, "output_aug_time": 16, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: "0.01", text: "Leopard", image: "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", resize_flag: true, optimize_steps: 200, output_aug_flag: true, output_aug_time: 16, center_crop_flag: false, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": "0.01", "text": "Leopard", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": True, "optimize_steps": 200, "output_aug_flag": True, "output_aug_time": 16, "center_crop_flag": False, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": "0.01", "text": "Leopard", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 200, "output_aug_flag": true, "output_aug_time": 16, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-25T04:48:29.808643Z", "created_at": "2021-11-25T04:46:19.466058Z", "data_removed": false, "error": null, "id": "yptuj4iqxvbjzgmgxm4pbs33km", "input": { "lr": "0.01", "text": "Leopard", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 200, "output_aug_flag": true, "output_aug_time": 16, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\nLeopard\ntensor([[49406, 15931, 49407, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\n/root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\n warnings.warn(\"Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\")\nstep : 0\n\tloss : 0.7587890625\nstep : 10\n\tloss : 0.6875\nstep : 20\n\tloss : 0.67822265625\nstep : 30\n\tloss : 0.67529296875\nstep : 40\n\tloss : 0.67138671875\nstep : 50\n\tloss : 0.67333984375\nstep : 60\n\tloss : 0.66796875\nstep : 70\n\tloss : 0.66748046875\nstep : 80\n\tloss : 0.6650390625\nstep : 90\n\tloss : 0.6640625\nstep : 100\n\tloss : 0.6640625\nstep : 110\n\tloss : 0.662109375\nstep : 120\n\tloss : 0.66650390625\nstep : 130\n\tloss : 0.66259765625\nstep : 140\n\tloss : 0.66162109375\nstep : 150\n\tloss : 0.66064453125\nstep : 160\n\tloss : 0.66064453125\nstep : 170\n\tloss : 0.658203125\nstep : 180\n\tloss : 0.65869140625\nstep : 190\n\tloss : 0.65966796875\nstep : 199\n\tloss : 0.65966796875", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/d09798f5-1758-4565-8284-982f3a34b436/out.png" }, { "file": "https://replicate.delivery/mgxm/0178491c-01fd-48ce-83fb-3dd6e69dfafc/out.png" }, { "file": "https://replicate.delivery/mgxm/1b8d2a42-55a6-4e89-af74-4869cb83c4d2/out.png" }, { "file": "https://replicate.delivery/mgxm/ca2e66ae-fdae-4c6a-935e-f878db80ea48/out.png" }, { "file": "https://replicate.delivery/mgxm/14cfac63-1b2a-42dd-a5a1-48ba0e8b3f0c/out.png" }, { "file": "https://replicate.delivery/mgxm/e1a54a1a-6ec4-4a5c-8a05-7ab60a229872/out.png" }, { "file": "https://replicate.delivery/mgxm/0407cb67-95e6-40f1-a430-ac40e20c9a4d/out.png" }, { "file": "https://replicate.delivery/mgxm/e29b2aae-cb9e-42fb-8adc-0b7153cd847b/out.png" }, { "file": "https://replicate.delivery/mgxm/93322bc1-5eb9-4048-83fb-995a95bf1177/out.png" }, { "file": "https://replicate.delivery/mgxm/eb1a2f8e-f30a-46af-bae6-bb80c07bcc26/out.png" }, { "file": "https://replicate.delivery/mgxm/9081a5ad-098e-4c96-885a-ca99fd779884/out.png" }, { "file": "https://replicate.delivery/mgxm/584fd3e0-5812-4bff-a3f3-1e361eca0bd0/out.png" }, { "file": "https://replicate.delivery/mgxm/af7ba34f-d925-4605-bc94-33bc89c0adf9/out.png" }, { "file": "https://replicate.delivery/mgxm/cc8d731a-5afb-4e7a-8058-b268590a9e22/out.png" }, { "file": "https://replicate.delivery/mgxm/193e7991-3096-40ef-8af9-cd1b81e18e26/out.png" }, { "file": "https://replicate.delivery/mgxm/84981b8d-4247-4667-a0ed-1a0e0183f634/out.png" }, { "file": "https://replicate.delivery/mgxm/f9dbb5dd-661a-43d9-b553-a7d800c10514/out.png" }, { "file": "https://replicate.delivery/mgxm/f88951ed-0559-4371-ae3a-c68c62157deb/out.png" }, { "file": "https://replicate.delivery/mgxm/f629b205-5dc6-4b9a-8cf2-0afab7412f5d/out.png" }, { "file": "https://replicate.delivery/mgxm/e8ef20e6-8952-4d6d-aa53-39ecf5151735/out.png" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yptuj4iqxvbjzgmgxm4pbs33km", "cancel": "https://api.replicate.com/v1/predictions/yptuj4iqxvbjzgmgxm4pbs33km/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content Leopard tensor([[49406, 15931, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') /root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero warnings.warn("Argument fill/fillcolor is not supported for Tensor input. Fill value is zero") step : 0 loss : 0.7587890625 step : 10 loss : 0.6875 step : 20 loss : 0.67822265625 step : 30 loss : 0.67529296875 step : 40 loss : 0.67138671875 step : 50 loss : 0.67333984375 step : 60 loss : 0.66796875 step : 70 loss : 0.66748046875 step : 80 loss : 0.6650390625 step : 90 loss : 0.6640625 step : 100 loss : 0.6640625 step : 110 loss : 0.662109375 step : 120 loss : 0.66650390625 step : 130 loss : 0.66259765625 step : 140 loss : 0.66162109375 step : 150 loss : 0.66064453125 step : 160 loss : 0.66064453125 step : 170 loss : 0.658203125 step : 180 loss : 0.65869140625 step : 190 loss : 0.65966796875 step : 199 loss : 0.65966796875
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDjcqnuj573bhghhrm4zwqacekhiStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- "0.01"
- text
- firework
- resize_flag
- optimize_steps
- 100
- output_aug_flag
- output_aug_time
- 16
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": "0.01", "text": "firework", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 100, "output_aug_flag": true, "output_aug_time": 16, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: "0.01", text: "firework", image: "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", resize_flag: true, optimize_steps: 100, output_aug_flag: true, output_aug_time: 16, center_crop_flag: false, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": "0.01", "text": "firework", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": True, "optimize_steps": 100, "output_aug_flag": True, "output_aug_time": 16, "center_crop_flag": False, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": "0.01", "text": "firework", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 100, "output_aug_flag": true, "output_aug_time": 16, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-25T05:00:42.326675Z", "created_at": "2021-11-25T04:59:34.870724Z", "data_removed": false, "error": null, "id": "jcqnuj573bhghhrm4zwqacekhi", "input": { "lr": "0.01", "text": "firework", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 100, "output_aug_flag": true, "output_aug_time": 16, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\nfirework\ntensor([[49406, 40750, 49407, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\n/root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\n warnings.warn(\"Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\")\nstep : 0\n\tloss : 0.78466796875\nstep : 10\n\tloss : 0.720703125\nstep : 20\n\tloss : 0.693359375\nstep : 30\n\tloss : 0.6865234375\nstep : 40\n\tloss : 0.68017578125\nstep : 50\n\tloss : 0.67626953125\nstep : 60\n\tloss : 0.677734375\nstep : 70\n\tloss : 0.67529296875\nstep : 80\n\tloss : 0.67529296875\nstep : 90\n\tloss : 0.669921875\nstep : 99\n\tloss : 0.6689453125", "metrics": { "total_time": 67.455951 }, "output": [ { "file": "https://replicate.delivery/mgxm/c103846a-1904-4fd4-9f41-c544cef17033/out.png" }, { "file": "https://replicate.delivery/mgxm/c4a0c918-32d9-453e-af0c-908b2caea859/out.png" }, { "file": "https://replicate.delivery/mgxm/651b0134-5ba3-4bea-afba-1742af12feb3/out.png" }, { "file": "https://replicate.delivery/mgxm/c2f19f57-8c9e-4f43-884f-f960a6cf4325/out.png" }, { "file": "https://replicate.delivery/mgxm/a307c5c0-3a9b-4ecf-8074-0897481d48d1/out.png" }, { "file": "https://replicate.delivery/mgxm/59557dd9-729a-4796-8b02-c4ea77fd0502/out.png" }, { "file": "https://replicate.delivery/mgxm/7a19121d-b6fb-4c65-bdd9-3a9a58f31298/out.png" }, { "file": "https://replicate.delivery/mgxm/022244c7-ad90-4c49-80f5-99f762c9281b/out.png" }, { "file": "https://replicate.delivery/mgxm/58be45c7-15fd-4030-800a-254c5e2d782f/out.png" }, { "file": "https://replicate.delivery/mgxm/4fb41829-6d3e-4bd2-9fac-4264b53e2d0e/out.png" } ], "started_at": "2022-01-18T11:14:25.494689Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/jcqnuj573bhghhrm4zwqacekhi", "cancel": "https://api.replicate.com/v1/predictions/jcqnuj573bhghhrm4zwqacekhi/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content firework tensor([[49406, 40750, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') /root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero warnings.warn("Argument fill/fillcolor is not supported for Tensor input. Fill value is zero") step : 0 loss : 0.78466796875 step : 10 loss : 0.720703125 step : 20 loss : 0.693359375 step : 30 loss : 0.6865234375 step : 40 loss : 0.68017578125 step : 50 loss : 0.67626953125 step : 60 loss : 0.677734375 step : 70 loss : 0.67529296875 step : 80 loss : 0.67529296875 step : 90 loss : 0.669921875 step : 99 loss : 0.6689453125
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDpylsrttc6zbx7guxfondk3rs6mStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- "0.01"
- text
- bush
- resize_flag
- optimize_steps
- 200
- output_aug_flag
- output_aug_time
- "8"
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": "0.01", "text": "bush", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 200, "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: "0.01", text: "bush", image: "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", resize_flag: true, optimize_steps: 200, output_aug_flag: true, output_aug_time: "8", center_crop_flag: true, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": "0.01", "text": "bush", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": True, "optimize_steps": 200, "output_aug_flag": True, "output_aug_time": "8", "center_crop_flag": True, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": "0.01", "text": "bush", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 200, "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-25T06:35:48.051283Z", "created_at": "2021-11-25T06:34:35.226702Z", "data_removed": false, "error": null, "id": "pylsrttc6zbx7guxfondk3rs6m", "input": { "lr": "0.01", "text": "bush", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": 200, "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\nbush\ntensor([[49406, 6867, 49407, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\nstep : 0\n\tloss : 0.76708984375\nstep : 10\n\tloss : 0.69970703125\nstep : 20\n\tloss : 0.68603515625\nstep : 30\n\tloss : 0.67578125\nstep : 40\n\tloss : 0.66943359375\nstep : 50\n\tloss : 0.66748046875\nstep : 60\n\tloss : 0.666015625\nstep : 70\n\tloss : 0.66064453125\nstep : 80\n\tloss : 0.66015625\nstep : 90\n\tloss : 0.66064453125\nstep : 100\n\tloss : 0.658203125\nstep : 110\n\tloss : 0.65673828125\nstep : 120\n\tloss : 0.65380859375\nstep : 130\n\tloss : 0.658203125\nstep : 140\n\tloss : 0.65576171875\nstep : 150\n\tloss : 0.654296875\nstep : 160\n\tloss : 0.65478515625\nstep : 170\n\tloss : 0.65234375\nstep : 180\n\tloss : 0.65185546875\nstep : 190\n\tloss : 0.65234375\nstep : 199\n\tloss : 0.65087890625", "metrics": { "total_time": 72.824581 }, "output": [ { "file": "https://replicate.delivery/mgxm/8a4eea14-af09-4c69-8238-30d71e893a55/out.png" }, { "file": "https://replicate.delivery/mgxm/d22021a2-60a9-4fcf-a651-b6b35ea97a8a/out.png" }, { "file": "https://replicate.delivery/mgxm/2a034186-1f39-4af7-bed6-b4d5bb299fe3/out.png" }, { "file": "https://replicate.delivery/mgxm/1b5076f4-f885-4559-a36c-ed4d5a73337f/out.png" }, { "file": "https://replicate.delivery/mgxm/b1862fcd-2402-423c-b6c2-f35fff666c5d/out.png" }, { "file": "https://replicate.delivery/mgxm/4a7ec2a0-1fb8-4cd3-a29e-68d6151dba84/out.png" }, { "file": "https://replicate.delivery/mgxm/e9933c08-4399-4f8f-90e7-5cbf0d84541d/out.png" }, { "file": "https://replicate.delivery/mgxm/fc7f0054-ae0e-4c29-a235-9ea6084fdde2/out.png" }, { "file": "https://replicate.delivery/mgxm/7c75ac50-1fdb-487d-9266-ada857c67cf2/out.png" }, { "file": "https://replicate.delivery/mgxm/a3ef10ff-23d0-4928-9290-c8fa0702fbf6/out.png" }, { "file": "https://replicate.delivery/mgxm/a6dbde1f-a0a8-46ae-8ae0-95feae68d615/out.png" }, { "file": "https://replicate.delivery/mgxm/c97fd967-6c28-4c4c-a2a7-f6adef701e48/out.png" }, { "file": "https://replicate.delivery/mgxm/bc46523c-5f4b-4377-bee5-f951d647187b/out.png" }, { "file": "https://replicate.delivery/mgxm/8ccf92af-0fb8-44fe-8d94-f0212a6a5c77/out.png" }, { "file": "https://replicate.delivery/mgxm/5e4fedb3-9627-49c2-b481-717475ed8f0d/out.png" }, { "file": "https://replicate.delivery/mgxm/27ece1db-9b85-4770-b1de-1188c001511b/out.png" }, { "file": "https://replicate.delivery/mgxm/985bcf6a-562f-401c-88a9-f7c9dc841d18/out.png" }, { "file": "https://replicate.delivery/mgxm/fd59d8a8-b547-4707-bbbb-345c6bf4292e/out.png" }, { "file": "https://replicate.delivery/mgxm/ebe3324a-0a90-4465-9b15-ce488c9b70d3/out.png" }, { "file": "https://replicate.delivery/mgxm/30280404-ecbf-4297-a6ed-284c9b9d3cec/out.png" } ], "started_at": "2022-05-29T22:57:33.796957Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pylsrttc6zbx7guxfondk3rs6m", "cancel": "https://api.replicate.com/v1/predictions/pylsrttc6zbx7guxfondk3rs6m/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content bush tensor([[49406, 6867, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') step : 0 loss : 0.76708984375 step : 10 loss : 0.69970703125 step : 20 loss : 0.68603515625 step : 30 loss : 0.67578125 step : 40 loss : 0.66943359375 step : 50 loss : 0.66748046875 step : 60 loss : 0.666015625 step : 70 loss : 0.66064453125 step : 80 loss : 0.66015625 step : 90 loss : 0.66064453125 step : 100 loss : 0.658203125 step : 110 loss : 0.65673828125 step : 120 loss : 0.65380859375 step : 130 loss : 0.658203125 step : 140 loss : 0.65576171875 step : 150 loss : 0.654296875 step : 160 loss : 0.65478515625 step : 170 loss : 0.65234375 step : 180 loss : 0.65185546875 step : 190 loss : 0.65234375 step : 199 loss : 0.65087890625
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDr6pssh6kxbcrpf3yytchb6hfhaStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- "0.01"
- text
- cheese cake
- resize_flag
- optimize_steps
- "100"
- output_aug_flag
- output_aug_time
- "8"
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": "0.01", "text": "cheese cake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: "0.01", text: "cheese cake", image: "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", resize_flag: true, optimize_steps: "100", output_aug_flag: true, output_aug_time: "8", center_crop_flag: true, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": "0.01", "text": "cheese cake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": True, "optimize_steps": "100", "output_aug_flag": True, "output_aug_time": "8", "center_crop_flag": True, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": "0.01", "text": "cheese cake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-25T04:09:01.518247Z", "created_at": "2021-11-25T04:06:53.426493Z", "data_removed": false, "error": null, "id": "r6pssh6kxbcrpf3yytchb6hfha", "input": { "lr": "0.01", "text": "cheese cake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\ncheese cake\ntensor([[49406, 4108, 2972, 49407, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\n/root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\n warnings.warn(\"Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\")\nstep : 0\n\tloss : 0.79052734375\nstep : 10\n\tloss : 0.72021484375\nstep : 20\n\tloss : 0.7001953125\nstep : 30\n\tloss : 0.6884765625\nstep : 40\n\tloss : 0.6796875\nstep : 50\n\tloss : 0.66796875\nstep : 60\n\tloss : 0.671875\nstep : 70\n\tloss : 0.662109375\nstep : 80\n\tloss : 0.6689453125\nstep : 90\n\tloss : 0.66064453125\nstep : 99\n\tloss : 0.65966796875", "metrics": { "total_time": 128.091754 }, "output": [ { "file": "https://replicate.delivery/mgxm/6d528b2d-e204-423c-8df7-1b83a1afd3a2/out.png" }, { "file": "https://replicate.delivery/mgxm/2faa21da-2ef5-45c3-b4ce-2fbc27d0946d/out.png" }, { "file": "https://replicate.delivery/mgxm/4015aafd-4773-4fed-ac7a-e1586d7c8333/out.png" }, { "file": "https://replicate.delivery/mgxm/52ee6647-c869-4bab-beea-80173fc85eac/out.png" }, { "file": "https://replicate.delivery/mgxm/28964bf5-0e41-4fb7-a332-de7d29ae50e0/out.png" }, { "file": "https://replicate.delivery/mgxm/f9d18057-8d9c-4ac3-a7c7-f92be00b7e43/out.png" }, { "file": "https://replicate.delivery/mgxm/ab014327-e1fc-4177-8181-acc562d7f2eb/out.png" }, { "file": "https://replicate.delivery/mgxm/437574f5-ad47-4708-8f05-347e6c5f7e8f/out.png" }, { "file": "https://replicate.delivery/mgxm/87e8ca5b-a313-4a74-83a8-e59fd8d444db/out.png" } ], "started_at": "2021-12-01T05:17:21.263747Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/r6pssh6kxbcrpf3yytchb6hfha", "cancel": "https://api.replicate.com/v1/predictions/r6pssh6kxbcrpf3yytchb6hfha/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content cheese cake tensor([[49406, 4108, 2972, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') /root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero warnings.warn("Argument fill/fillcolor is not supported for Tensor input. Fill value is zero") step : 0 loss : 0.79052734375 step : 10 loss : 0.72021484375 step : 20 loss : 0.7001953125 step : 30 loss : 0.6884765625 step : 40 loss : 0.6796875 step : 50 loss : 0.66796875 step : 60 loss : 0.671875 step : 70 loss : 0.662109375 step : 80 loss : 0.6689453125 step : 90 loss : 0.66064453125 step : 99 loss : 0.65966796875
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDtjjlhfjmbjgwthry34asedeipaStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- "0.01"
- text
- green and blue mosaic
- resize_flag
- optimize_steps
- "100"
- output_aug_flag
- output_aug_time
- "8"
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": "0.01", "text": "green and blue mosaic", "image": "https://replicate.delivery/mgxm/406d0b26-1840-4d52-9071-917df59ce07d/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: "0.01", text: "green and blue mosaic", image: "https://replicate.delivery/mgxm/406d0b26-1840-4d52-9071-917df59ce07d/doge.jpeg", resize_flag: true, optimize_steps: "100", output_aug_flag: true, output_aug_time: "8", center_crop_flag: true, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": "0.01", "text": "green and blue mosaic", "image": "https://replicate.delivery/mgxm/406d0b26-1840-4d52-9071-917df59ce07d/doge.jpeg", "resize_flag": True, "optimize_steps": "100", "output_aug_flag": True, "output_aug_time": "8", "center_crop_flag": True, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": "0.01", "text": "green and blue mosaic", "image": "https://replicate.delivery/mgxm/406d0b26-1840-4d52-9071-917df59ce07d/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-25T04:35:19.455453Z", "created_at": "2021-11-25T04:31:47.006607Z", "data_removed": false, "error": null, "id": "tjjlhfjmbjgwthry34asedeipa", "input": { "lr": "0.01", "text": "green and blue mosaic", "image": "https://replicate.delivery/mgxm/406d0b26-1840-4d52-9071-917df59ce07d/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\ngreen and blue mosaic\ntensor([[49406, 1901, 537, 1746, 17506, 49407, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\n/root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\n warnings.warn(\"Argument fill/fillcolor is not supported for Tensor input. Fill value is zero\")\nstep : 0\n\tloss : 0.794921875\nstep : 10\n\tloss : 0.69873046875\nstep : 20\n\tloss : 0.6689453125\nstep : 30\n\tloss : 0.6513671875\nstep : 40\n\tloss : 0.63818359375\nstep : 50\n\tloss : 0.62890625\nstep : 60\n\tloss : 0.62451171875\nstep : 70\n\tloss : 0.6201171875\nstep : 80\n\tloss : 0.61328125\nstep : 90\n\tloss : 0.6142578125\nstep : 99\n\tloss : 0.60791015625", "metrics": { "total_time": 212.448846 }, "output": [ { "file": "https://replicate.delivery/mgxm/a6ad966f-4a8c-4a35-9f3a-cdb673a9660c/out.png" }, { "file": "https://replicate.delivery/mgxm/37584e4e-4419-4f49-87b8-365efa4e04d7/out.png" }, { "file": "https://replicate.delivery/mgxm/c563c06a-8b56-495f-a772-e5a7428bdc20/out.png" }, { "file": "https://replicate.delivery/mgxm/d826bd25-08d1-450a-a818-8b50b752babf/out.png" }, { "file": "https://replicate.delivery/mgxm/5e8fedc5-11e5-42b6-9c0e-544907f2b906/out.png" }, { "file": "https://replicate.delivery/mgxm/e8792a16-d6a9-4b9e-a5d6-459bc6827ccb/out.png" }, { "file": "https://replicate.delivery/mgxm/ed1c4f87-ae4a-4fd9-b6cd-aa57b740424d/out.png" }, { "file": "https://replicate.delivery/mgxm/b6ad0e9a-5388-4364-8acd-2d0a4f5cede1/out.png" } ], "started_at": "2022-03-21T02:13:07.586925Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/tjjlhfjmbjgwthry34asedeipa", "cancel": "https://api.replicate.com/v1/predictions/tjjlhfjmbjgwthry34asedeipa/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content green and blue mosaic tensor([[49406, 1901, 537, 1746, 17506, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') /root/.pyenv/versions/3.7.12/lib/python3.7/site-packages/torchvision/transforms/functional_tensor.py:876: UserWarning: Argument fill/fillcolor is not supported for Tensor input. Fill value is zero warnings.warn("Argument fill/fillcolor is not supported for Tensor input. Fill value is zero") step : 0 loss : 0.794921875 step : 10 loss : 0.69873046875 step : 20 loss : 0.6689453125 step : 30 loss : 0.6513671875 step : 40 loss : 0.63818359375 step : 50 loss : 0.62890625 step : 60 loss : 0.62451171875 step : 70 loss : 0.6201171875 step : 80 loss : 0.61328125 step : 90 loss : 0.6142578125 step : 99 loss : 0.60791015625
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDty753xnswnc75og5xmlpsgc7ieStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- 0.001
- text
- bubble tea
- resize_flag
- optimize_steps
- "100"
- output_aug_flag
- output_aug_time
- 32
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": 0.001, "text": "bubble tea", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": 32, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: 0.001, text: "bubble tea", image: "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", resize_flag: true, optimize_steps: "100", output_aug_flag: true, output_aug_time: 32, center_crop_flag: false, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": 0.001, "text": "bubble tea", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": True, "optimize_steps": "100", "output_aug_flag": True, "output_aug_time": 32, "center_crop_flag": False, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": 0.001, "text": "bubble tea", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": 32, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-25T10:21:29.235136Z", "created_at": "2021-11-25T10:19:53.336394Z", "data_removed": false, "error": null, "id": "ty753xnswnc75og5xmlpsgc7ie", "input": { "lr": 0.001, "text": "bubble tea", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": 32, "center_crop_flag": false, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\nbubble tea\ntensor([[49406, 10799, 3274, 49407, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\nstep : 0\n\tloss : 0.7666015625\nstep : 10\n\tloss : 0.7421875\nstep : 20\n\tloss : 0.71875\nstep : 30\n\tloss : 0.7021484375\nstep : 40\n\tloss : 0.68310546875\nstep : 50\n\tloss : 0.67236328125\nstep : 60\n\tloss : 0.6669921875\nstep : 70\n\tloss : 0.66455078125\nstep : 80\n\tloss : 0.65283203125\nstep : 90\n\tloss : 0.6513671875\nstep : 99\n\tloss : 0.6474609375", "metrics": { "total_time": 95.898742 }, "output": [ { "file": "https://replicate.delivery/mgxm/a31aabd9-cc6b-4f2d-bbc4-56877258e8da/out.png" }, { "file": "https://replicate.delivery/mgxm/03978353-4c65-4411-a16c-a87fde83be88/out.png" }, { "file": "https://replicate.delivery/mgxm/132d8157-ecb4-40fa-8ca4-6472d43c9b7d/out.png" }, { "file": "https://replicate.delivery/mgxm/a8ca7391-f89c-4b78-8836-411cd9a34d76/out.png" }, { "file": "https://replicate.delivery/mgxm/634b8879-0ecf-4b12-9de6-3f0ed253fc32/out.png" }, { "file": "https://replicate.delivery/mgxm/628d82fe-6f00-4557-b21e-f7eaf66795e7/out.png" }, { "file": "https://replicate.delivery/mgxm/4a997244-62ca-4fef-99a7-0458327dae4f/out.png" }, { "file": "https://replicate.delivery/mgxm/ce59df4a-b9a8-4683-8738-dc550902248b/out.png" }, { "file": "https://replicate.delivery/mgxm/a1a82ebe-5a64-4ecc-b7e1-9357420e9f7b/out.png" }, { "file": "https://replicate.delivery/mgxm/3f64353b-40b8-472b-a927-4d879ca402be/out.png" } ], "started_at": "2022-02-14T14:00:13.533018Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ty753xnswnc75og5xmlpsgc7ie", "cancel": "https://api.replicate.com/v1/predictions/ty753xnswnc75og5xmlpsgc7ie/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content bubble tea tensor([[49406, 10799, 3274, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') step : 0 loss : 0.7666015625 step : 10 loss : 0.7421875 step : 20 loss : 0.71875 step : 30 loss : 0.7021484375 step : 40 loss : 0.68310546875 step : 50 loss : 0.67236328125 step : 60 loss : 0.6669921875 step : 70 loss : 0.66455078125 step : 80 loss : 0.65283203125 step : 90 loss : 0.6513671875 step : 99 loss : 0.6474609375
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDinejaulchbfcrbzq3amdyxms6aStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- "0.01"
- text
- pancake
- resize_flag
- optimize_steps
- "100"
- output_aug_flag
- output_aug_time
- 32
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": "0.01", "text": "pancake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": 32, "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: "0.01", text: "pancake", image: "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", resize_flag: true, optimize_steps: "100", output_aug_flag: true, output_aug_time: 32, center_crop_flag: true, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": "0.01", "text": "pancake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": True, "optimize_steps": "100", "output_aug_flag": True, "output_aug_time": 32, "center_crop_flag": True, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": "0.01", "text": "pancake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": 32, "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-26T10:08:31.128908Z", "created_at": "2021-11-26T10:07:25.005697Z", "data_removed": false, "error": null, "id": "inejaulchbfcrbzq3amdyxms6a", "input": { "lr": "0.01", "text": "pancake", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": 32, "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\npancake\ntensor([[49406, 18723, 49407, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\nstep : 0\n\tloss : 0.7568359375\nstep : 10\n\tloss : 0.6923828125\nstep : 20\n\tloss : 0.66748046875\nstep : 30\n\tloss : 0.6591796875\nstep : 40\n\tloss : 0.65283203125\nstep : 50\n\tloss : 0.6474609375\nstep : 60\n\tloss : 0.6455078125\nstep : 70\n\tloss : 0.64208984375\nstep : 80\n\tloss : 0.640625\nstep : 90\n\tloss : 0.6376953125\nstep : 99\n\tloss : 0.63916015625", "metrics": { "total_time": 66.123211 }, "output": [ { "file": "https://replicate.delivery/mgxm/893819c5-8d9d-4780-9d93-e8708f88b727/out.png" }, { "file": "https://replicate.delivery/mgxm/fe8e52d8-15c2-4b82-94f5-69e6b7a60bd7/out.png" }, { "file": "https://replicate.delivery/mgxm/4693425e-0194-459d-b1af-0c5e48f9b346/out.png" }, { "file": "https://replicate.delivery/mgxm/a60358d9-f051-4373-9502-c3f47b5aba1b/out.png" }, { "file": "https://replicate.delivery/mgxm/ede0fe19-384f-4647-ba64-3a0d285f723a/out.png" }, { "file": "https://replicate.delivery/mgxm/72e309b4-a954-4dba-a3ef-0932730ff068/out.png" }, { "file": "https://replicate.delivery/mgxm/9ffa03b7-e86d-4b64-9a9e-bc80263a91ee/out.png" }, { "file": "https://replicate.delivery/mgxm/45ecf32d-b94f-4845-be6b-59749802f048/out.png" }, { "file": "https://replicate.delivery/mgxm/d2d4cdbc-4c89-411f-a4ff-016b79fa0a9d/out.png" }, { "file": "https://replicate.delivery/mgxm/28f04b3a-6e5e-4e39-8ff7-f5e2a24de149/out.png" } ], "started_at": "2022-01-16T20:17:08.585517Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/inejaulchbfcrbzq3amdyxms6a", "cancel": "https://api.replicate.com/v1/predictions/inejaulchbfcrbzq3amdyxms6a/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content pancake tensor([[49406, 18723, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') step : 0 loss : 0.7568359375 step : 10 loss : 0.6923828125 step : 20 loss : 0.66748046875 step : 30 loss : 0.6591796875 step : 40 loss : 0.65283203125 step : 50 loss : 0.6474609375 step : 60 loss : 0.6455078125 step : 70 loss : 0.64208984375 step : 80 loss : 0.640625 step : 90 loss : 0.6376953125 step : 99 loss : 0.63916015625
Prediction
mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50aIDl44qbwjyxff2lovnzk7h72paoaStatusSucceededSourceWebHardware–Total duration–CreatedInput
- lr
- "0.01"
- text
- colorful pearls
- resize_flag
- optimize_steps
- "100"
- output_aug_flag
- output_aug_time
- "8"
- center_crop_flag
- display_every_step
- "10"
- short_edge_target_len
- "384"
{ "lr": "0.01", "text": "colorful pearls", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", { input: { lr: "0.01", text: "colorful pearls", image: "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", resize_flag: true, optimize_steps: "100", output_aug_flag: true, output_aug_time: "8", center_crop_flag: true, display_every_step: "10", short_edge_target_len: "384" } } ); console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", input={ "lr": "0.01", "text": "colorful pearls", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": True, "optimize_steps": "100", "output_aug_flag": True, "output_aug_time": "8", "center_crop_flag": True, "display_every_step": "10", "short_edge_target_len": "384" } ) # The mistake0316/style-transfer-clip model can stream output as it's running. # The predict method returns an iterator, and you can iterate over that output. for item in output: # https://replicate.com/mistake0316/style-transfer-clip/api#output-schema print(item)
To learn more, take a look at the guide on getting started with Python.
Run mistake0316/style-transfer-clip using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "mistake0316/style-transfer-clip:4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a", "input": { "lr": "0.01", "text": "colorful pearls", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2021-11-27T09:02:53.338825Z", "created_at": "2021-11-27T09:02:17.050293Z", "data_removed": false, "error": null, "id": "l44qbwjyxff2lovnzk7h72paoa", "input": { "lr": "0.01", "text": "colorful pearls", "image": "https://replicate.delivery/mgxm/0f51aae9-ef91-4ee6-a83f-065abbb7a65c/doge.jpeg", "resize_flag": true, "optimize_steps": "100", "output_aug_flag": true, "output_aug_time": "8", "center_crop_flag": true, "display_every_step": "10", "short_edge_target_len": "384" }, "logs": "loading content\ncolorful pearls\ntensor([[49406, 11444, 19581, 49407, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n 0, 0, 0, 0, 0, 0, 0]], device='cuda:0')\nstep : 0\n\tloss : 0.810546875\nstep : 10\n\tloss : 0.666015625\nstep : 20\n\tloss : 0.64697265625\nstep : 30\n\tloss : 0.630859375\nstep : 40\n\tloss : 0.6220703125\nstep : 50\n\tloss : 0.6181640625\nstep : 60\n\tloss : 0.615234375\nstep : 70\n\tloss : 0.609375\nstep : 80\n\tloss : 0.607421875\nstep : 90\n\tloss : 0.609375\nstep : 99\n\tloss : 0.6103515625", "metrics": {}, "output": [ { "file": "https://replicate.delivery/mgxm/84711ab2-ec4e-4f69-8328-c5f98509480d/out.png" }, { "file": "https://replicate.delivery/mgxm/b5441177-874b-47d7-8d82-70d392735856/out.png" }, { "file": "https://replicate.delivery/mgxm/2e2869d9-6cef-4851-88ac-2b25bc98e12f/out.png" }, { "file": "https://replicate.delivery/mgxm/7098a16b-7033-4ca5-af17-fbff743a92a5/out.png" }, { "file": "https://replicate.delivery/mgxm/bfdb9eb3-7c46-4a2b-ba22-2fc8b574b9a2/out.png" }, { "file": "https://replicate.delivery/mgxm/04675430-99ad-4d10-952b-161f1ac876f2/out.png" }, { "file": "https://replicate.delivery/mgxm/69418288-31ff-48d4-a6cf-ab5b6e35941b/out.png" }, { "file": "https://replicate.delivery/mgxm/6b595132-6d85-4253-9fee-929213d65169/out.png" }, { "file": "https://replicate.delivery/mgxm/1ec17153-0023-44d4-9e04-9d77be11bcbe/out.png" }, { "file": "https://replicate.delivery/mgxm/1bdb037c-d6f2-4562-b6eb-b60ffc49e04b/out.png" }, { "file": "https://replicate.delivery/mgxm/9fe38d57-5e5d-4de0-87dd-dcda3d33576e/out.png" } ], "started_at": null, "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/l44qbwjyxff2lovnzk7h72paoa", "cancel": "https://api.replicate.com/v1/predictions/l44qbwjyxff2lovnzk7h72paoa/cancel" }, "version": "4f26fddbeddab99fdbd1f4a38884f7f1fa70e015a89071583af82aec8d39b50a" }
loading content colorful pearls tensor([[49406, 11444, 19581, 49407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], device='cuda:0') step : 0 loss : 0.810546875 step : 10 loss : 0.666015625 step : 20 loss : 0.64697265625 step : 30 loss : 0.630859375 step : 40 loss : 0.6220703125 step : 50 loss : 0.6181640625 step : 60 loss : 0.615234375 step : 70 loss : 0.609375 step : 80 loss : 0.607421875 step : 90 loss : 0.609375 step : 99 loss : 0.6103515625
Want to make some of these yourself?
Run this model