pagebrain / wuerstchen-v2
Fast Diffusion for Image Generation, ~3 Seconds
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDw3hycztb6m2lcgihtne5bb5fbyStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic chicken dressed as an officer
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { width: 1024, height: 1024, prompt: "Anthropomorphic chicken dressed as an officer", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic chicken dressed as an officer"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:28:41.551613Z", "created_at": "2023-09-14T08:26:03.565768Z", "data_removed": false, "error": null, "id": "w3hycztb6m2lcgihtne5bb5fby", "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 50858\nPrompt: Anthropomorphic chicken dressed as an officer\n 0%| | 0/30 [00:00<?, ?it/s]\n 13%|█▎ | 4/30 [00:00<00:00, 38.27it/s]\n 27%|██▋ | 8/30 [00:00<00:00, 38.65it/s]\n 43%|████▎ | 13/30 [00:00<00:00, 40.05it/s]\n 60%|██████ | 18/30 [00:00<00:00, 40.68it/s]\n 77%|███████▋ | 23/30 [00:00<00:00, 40.98it/s]\n 93%|█████████▎| 28/30 [00:00<00:00, 41.17it/s]\n100%|██████████| 30/30 [00:00<00:00, 40.69it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 17%|█▋ | 2/12 [00:00<00:00, 18.06it/s]\n 42%|████▏ | 5/12 [00:00<00:00, 21.66it/s]\n 67%|██████▋ | 8/12 [00:00<00:00, 22.56it/s]\n 92%|█████████▏| 11/12 [00:00<00:00, 23.04it/s]\n100%|██████████| 12/12 [00:00<00:00, 22.54it/s]", "metrics": { "predict_time": 2.876437, "total_time": 157.985845 }, "output": [ "https://pbxt.replicate.delivery/2fwUSWj8Sq0yaSywcqjc71K0Bj8FfNfpovflY6ss3YBijdQGB/out-0.png" ], "started_at": "2023-09-14T08:28:38.675176Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/w3hycztb6m2lcgihtne5bb5fby", "cancel": "https://api.replicate.com/v1/predictions/w3hycztb6m2lcgihtne5bb5fby/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 50858 Prompt: Anthropomorphic chicken dressed as an officer 0%| | 0/30 [00:00<?, ?it/s] 13%|█▎ | 4/30 [00:00<00:00, 38.27it/s] 27%|██▋ | 8/30 [00:00<00:00, 38.65it/s] 43%|████▎ | 13/30 [00:00<00:00, 40.05it/s] 60%|██████ | 18/30 [00:00<00:00, 40.68it/s] 77%|███████▋ | 23/30 [00:00<00:00, 40.98it/s] 93%|█████████▎| 28/30 [00:00<00:00, 41.17it/s] 100%|██████████| 30/30 [00:00<00:00, 40.69it/s] 0%| | 0/12 [00:00<?, ?it/s] 17%|█▋ | 2/12 [00:00<00:00, 18.06it/s] 42%|████▏ | 5/12 [00:00<00:00, 21.66it/s] 67%|██████▋ | 8/12 [00:00<00:00, 22.56it/s] 92%|█████████▏| 11/12 [00:00<00:00, 23.04it/s] 100%|██████████| 12/12 [00:00<00:00, 22.54it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDx76ltplbe6ufxucocdwtdjasq4StatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic chicken dressed as an officer
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { width: 1024, height: 1024, prompt: "Anthropomorphic chicken dressed as an officer", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic chicken dressed as an officer"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:28:41.313241Z", "created_at": "2023-09-14T08:25:49.135087Z", "data_removed": false, "error": null, "id": "x76ltplbe6ufxucocdwtdjasq4", "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 20924\nPrompt: Anthropomorphic chicken dressed as an officer\n 0%| | 0/30 [00:00<?, ?it/s]\n 13%|█▎ | 4/30 [00:00<00:00, 38.86it/s]\n 30%|███ | 9/30 [00:00<00:00, 40.46it/s]\n 47%|████▋ | 14/30 [00:00<00:00, 40.93it/s]\n 63%|██████▎ | 19/30 [00:00<00:00, 41.10it/s]\n 80%|████████ | 24/30 [00:00<00:00, 41.22it/s]\n 97%|█████████▋| 29/30 [00:00<00:00, 41.29it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.04it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 17%|█▋ | 2/12 [00:00<00:00, 17.68it/s]\n 42%|████▏ | 5/12 [00:00<00:00, 21.33it/s]\n 67%|██████▋ | 8/12 [00:00<00:00, 22.53it/s]\n 92%|█████████▏| 11/12 [00:00<00:00, 23.08it/s]\n100%|██████████| 12/12 [00:00<00:00, 22.51it/s]", "metrics": { "predict_time": 3.009404, "total_time": 172.178154 }, "output": [ "https://pbxt.replicate.delivery/HNPvfnP8sTUKJqnEECiPbmObGg89WVnq0dLrzhJsNFRcsDyIA/out-0.png" ], "started_at": "2023-09-14T08:28:38.303837Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/x76ltplbe6ufxucocdwtdjasq4", "cancel": "https://api.replicate.com/v1/predictions/x76ltplbe6ufxucocdwtdjasq4/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 20924 Prompt: Anthropomorphic chicken dressed as an officer 0%| | 0/30 [00:00<?, ?it/s] 13%|█▎ | 4/30 [00:00<00:00, 38.86it/s] 30%|███ | 9/30 [00:00<00:00, 40.46it/s] 47%|████▋ | 14/30 [00:00<00:00, 40.93it/s] 63%|██████▎ | 19/30 [00:00<00:00, 41.10it/s] 80%|████████ | 24/30 [00:00<00:00, 41.22it/s] 97%|█████████▋| 29/30 [00:00<00:00, 41.29it/s] 100%|██████████| 30/30 [00:00<00:00, 41.04it/s] 0%| | 0/12 [00:00<?, ?it/s] 17%|█▋ | 2/12 [00:00<00:00, 17.68it/s] 42%|████▏ | 5/12 [00:00<00:00, 21.33it/s] 67%|██████▋ | 8/12 [00:00<00:00, 22.53it/s] 92%|█████████▏| 11/12 [00:00<00:00, 23.08it/s] 100%|██████████| 12/12 [00:00<00:00, 22.51it/s]
Prediction
pagebrain/wuerstchen-v2:38331cbfd47332a3969b52a196ab26dcc8978209af6cbe7a74dbcf3a8ca7872aID565afkbbosrogqcmmozwajopnaStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic chicken dressed as an officer
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:38331cbfd47332a3969b52a196ab26dcc8978209af6cbe7a74dbcf3a8ca7872a", { input: { width: 1024, height: 1024, prompt: "Anthropomorphic chicken dressed as an officer", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:38331cbfd47332a3969b52a196ab26dcc8978209af6cbe7a74dbcf3a8ca7872a", input={ "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:38331cbfd47332a3969b52a196ab26dcc8978209af6cbe7a74dbcf3a8ca7872a", "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:38331cbfd47332a3969b52a196ab26dcc8978209af6cbe7a74dbcf3a8ca7872a \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic chicken dressed as an officer"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:38331cbfd47332a3969b52a196ab26dcc8978209af6cbe7a74dbcf3a8ca7872a
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:26:35.134417Z", "created_at": "2023-09-14T08:23:57.235411Z", "data_removed": false, "error": null, "id": "565afkbbosrogqcmmozwajopna", "input": { "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 34461\nPrompt: Anthropomorphic chicken dressed as an officer\n 0%| | 0/30 [00:00<?, ?it/s]\n 7%|▋ | 2/30 [00:00<00:01, 16.46it/s]\n 13%|█▎ | 4/30 [00:00<00:01, 17.82it/s]\n 20%|██ | 6/30 [00:00<00:01, 17.74it/s]\n 27%|██▋ | 8/30 [00:00<00:01, 18.26it/s]\n 33%|███▎ | 10/30 [00:00<00:01, 18.71it/s]\n 40%|████ | 12/30 [00:00<00:00, 19.05it/s]\n 47%|████▋ | 14/30 [00:00<00:00, 19.17it/s]\n 53%|█████▎ | 16/30 [00:00<00:00, 19.40it/s]\n 60%|██████ | 18/30 [00:00<00:00, 19.42it/s]\n 70%|███████ | 21/30 [00:01<00:00, 19.67it/s]\n 80%|████████ | 24/30 [00:01<00:00, 19.80it/s]\n 87%|████████▋ | 26/30 [00:01<00:00, 19.64it/s]\n 97%|█████████▋| 29/30 [00:01<00:00, 19.87it/s]\n100%|██████████| 30/30 [00:01<00:00, 19.28it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 8%|▊ | 1/12 [00:00<00:01, 6.13it/s]\n 25%|██▌ | 3/12 [00:00<00:01, 8.90it/s]\n 42%|████▏ | 5/12 [00:00<00:00, 9.83it/s]\n 58%|█████▊ | 7/12 [00:00<00:00, 10.24it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 10.36it/s]\n 92%|█████████▏| 11/12 [00:01<00:00, 10.47it/s]\n100%|██████████| 12/12 [00:01<00:00, 10.07it/s]", "metrics": { "predict_time": 4.201766, "total_time": 157.899006 }, "output": [ "https://pbxt.replicate.delivery/AEUi668tms6wH9U7ihi49lRLh5yWYxs55haEHj9DTHuu1BZE/out-0.png" ], "started_at": "2023-09-14T08:26:30.932651Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/565afkbbosrogqcmmozwajopna", "cancel": "https://api.replicate.com/v1/predictions/565afkbbosrogqcmmozwajopna/cancel" }, "version": "38331cbfd47332a3969b52a196ab26dcc8978209af6cbe7a74dbcf3a8ca7872a" }
Generated inUsing seed: 34461 Prompt: Anthropomorphic chicken dressed as an officer 0%| | 0/30 [00:00<?, ?it/s] 7%|▋ | 2/30 [00:00<00:01, 16.46it/s] 13%|█▎ | 4/30 [00:00<00:01, 17.82it/s] 20%|██ | 6/30 [00:00<00:01, 17.74it/s] 27%|██▋ | 8/30 [00:00<00:01, 18.26it/s] 33%|███▎ | 10/30 [00:00<00:01, 18.71it/s] 40%|████ | 12/30 [00:00<00:00, 19.05it/s] 47%|████▋ | 14/30 [00:00<00:00, 19.17it/s] 53%|█████▎ | 16/30 [00:00<00:00, 19.40it/s] 60%|██████ | 18/30 [00:00<00:00, 19.42it/s] 70%|███████ | 21/30 [00:01<00:00, 19.67it/s] 80%|████████ | 24/30 [00:01<00:00, 19.80it/s] 87%|████████▋ | 26/30 [00:01<00:00, 19.64it/s] 97%|█████████▋| 29/30 [00:01<00:00, 19.87it/s] 100%|██████████| 30/30 [00:01<00:00, 19.28it/s] 0%| | 0/12 [00:00<?, ?it/s] 8%|▊ | 1/12 [00:00<00:01, 6.13it/s] 25%|██▌ | 3/12 [00:00<00:01, 8.90it/s] 42%|████▏ | 5/12 [00:00<00:00, 9.83it/s] 58%|█████▊ | 7/12 [00:00<00:00, 10.24it/s] 75%|███████▌ | 9/12 [00:00<00:00, 10.36it/s] 92%|█████████▏| 11/12 [00:01<00:00, 10.47it/s] 100%|██████████| 12/12 [00:01<00:00, 10.07it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDe6rckjdbcneiggx4lkxcugezbiStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 10352
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic chicken dressed as an officer
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { seed: 10352, width: 1024, height: 1024, prompt: "Anthropomorphic chicken dressed as an officer", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'seed=10352' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic chicken dressed as an officer"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:34:11.252947Z", "created_at": "2023-09-14T08:34:02.812145Z", "data_removed": false, "error": null, "id": "e6rckjdbcneiggx4lkxcugezbi", "input": { "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 10352\nPrompt: Anthropomorphic chicken dressed as an officer\n 0%| | 0/30 [00:00<?, ?it/s]\n 17%|█▋ | 5/30 [00:00<00:00, 41.19it/s]\n 33%|███▎ | 10/30 [00:00<00:00, 41.25it/s]\n 50%|█████ | 15/30 [00:00<00:00, 41.29it/s]\n 67%|██████▋ | 20/30 [00:00<00:00, 41.23it/s]\n 83%|████████▎ | 25/30 [00:00<00:00, 41.32it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.38it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.32it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 23.92it/s]\n 50%|█████ | 6/12 [00:00<00:00, 23.91it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 23.90it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.90it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.90it/s]", "metrics": { "predict_time": 2.945063, "total_time": 8.440802 }, "output": [ "https://pbxt.replicate.delivery/VmLbv7appV6kANhE7q4kzwaaaXSV1eRtF5GIq8Ixf4pCeOIjA/out-0.png" ], "started_at": "2023-09-14T08:34:08.307884Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/e6rckjdbcneiggx4lkxcugezbi", "cancel": "https://api.replicate.com/v1/predictions/e6rckjdbcneiggx4lkxcugezbi/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 10352 Prompt: Anthropomorphic chicken dressed as an officer 0%| | 0/30 [00:00<?, ?it/s] 17%|█▋ | 5/30 [00:00<00:00, 41.19it/s] 33%|███▎ | 10/30 [00:00<00:00, 41.25it/s] 50%|█████ | 15/30 [00:00<00:00, 41.29it/s] 67%|██████▋ | 20/30 [00:00<00:00, 41.23it/s] 83%|████████▎ | 25/30 [00:00<00:00, 41.32it/s] 100%|██████████| 30/30 [00:00<00:00, 41.38it/s] 100%|██████████| 30/30 [00:00<00:00, 41.32it/s] 0%| | 0/12 [00:00<?, ?it/s] 25%|██▌ | 3/12 [00:00<00:00, 23.92it/s] 50%|█████ | 6/12 [00:00<00:00, 23.91it/s] 75%|███████▌ | 9/12 [00:00<00:00, 23.90it/s] 100%|██████████| 12/12 [00:00<00:00, 23.90it/s] 100%|██████████| 12/12 [00:00<00:00, 23.90it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDreiun63bn2h32xhrfphquwkfqaStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 50402
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic chicken dressed as an officer
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 50402, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { seed: 50402, width: 1024, height: 1024, prompt: "Anthropomorphic chicken dressed as an officer", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "seed": 50402, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "seed": 50402, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'seed=50402' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic chicken dressed as an officer"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 50402, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:33:48.837836Z", "created_at": "2023-09-14T08:33:45.869495Z", "data_removed": false, "error": null, "id": "reiun63bn2h32xhrfphquwkfqa", "input": { "seed": 50402, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 50402\nPrompt: Anthropomorphic chicken dressed as an officer\n 0%| | 0/30 [00:00<?, ?it/s]\n 17%|█▋ | 5/30 [00:00<00:00, 41.43it/s]\n 33%|███▎ | 10/30 [00:00<00:00, 41.45it/s]\n 50%|█████ | 15/30 [00:00<00:00, 41.34it/s]\n 67%|██████▋ | 20/30 [00:00<00:00, 41.40it/s]\n 83%|████████▎ | 25/30 [00:00<00:00, 41.41it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.44it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.41it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 23.82it/s]\n 50%|█████ | 6/12 [00:00<00:00, 23.80it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 23.85it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.87it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.84it/s]", "metrics": { "predict_time": 2.961794, "total_time": 2.968341 }, "output": [ "https://pbxt.replicate.delivery/qfBWgmyAg7X4BqOFZs41Xj13ewDOPR5NWzfJLtuqClCX7OIjA/out-0.png" ], "started_at": "2023-09-14T08:33:45.876042Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/reiun63bn2h32xhrfphquwkfqa", "cancel": "https://api.replicate.com/v1/predictions/reiun63bn2h32xhrfphquwkfqa/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 50402 Prompt: Anthropomorphic chicken dressed as an officer 0%| | 0/30 [00:00<?, ?it/s] 17%|█▋ | 5/30 [00:00<00:00, 41.43it/s] 33%|███▎ | 10/30 [00:00<00:00, 41.45it/s] 50%|█████ | 15/30 [00:00<00:00, 41.34it/s] 67%|██████▋ | 20/30 [00:00<00:00, 41.40it/s] 83%|████████▎ | 25/30 [00:00<00:00, 41.41it/s] 100%|██████████| 30/30 [00:00<00:00, 41.44it/s] 100%|██████████| 30/30 [00:00<00:00, 41.41it/s] 0%| | 0/12 [00:00<?, ?it/s] 25%|██▌ | 3/12 [00:00<00:00, 23.82it/s] 50%|█████ | 6/12 [00:00<00:00, 23.80it/s] 75%|███████▌ | 9/12 [00:00<00:00, 23.85it/s] 100%|██████████| 12/12 [00:00<00:00, 23.87it/s] 100%|██████████| 12/12 [00:00<00:00, 23.84it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDb45x4x3bivf4vfpw6mzqwbjmaeStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 42626
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic cat dressed as a firefighter
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 42626, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { seed: 42626, width: 1024, height: 1024, prompt: "Anthropomorphic cat dressed as a firefighter", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "seed": 42626, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "seed": 42626, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'seed=42626' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic cat dressed as a firefighter"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 42626, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:35:25.023058Z", "created_at": "2023-09-14T08:35:22.063589Z", "data_removed": false, "error": null, "id": "b45x4x3bivf4vfpw6mzqwbjmae", "input": { "seed": 42626, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 42626\nPrompt: Anthropomorphic cat dressed as a firefighter\n 0%| | 0/30 [00:00<?, ?it/s]\n 17%|█▋ | 5/30 [00:00<00:00, 41.48it/s]\n 33%|███▎ | 10/30 [00:00<00:00, 41.55it/s]\n 50%|█████ | 15/30 [00:00<00:00, 41.52it/s]\n 67%|██████▋ | 20/30 [00:00<00:00, 41.51it/s]\n 83%|████████▎ | 25/30 [00:00<00:00, 41.51it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.48it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.48it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 23.92it/s]\n 50%|█████ | 6/12 [00:00<00:00, 23.92it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 23.90it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.90it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.89it/s]", "metrics": { "predict_time": 2.960077, "total_time": 2.959469 }, "output": [ "https://pbxt.replicate.delivery/qONZwcX0RXqaABvRt8wAp2uxpEYelHpzsHifyJaPcReZedQGB/out-0.png" ], "started_at": "2023-09-14T08:35:22.062981Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/b45x4x3bivf4vfpw6mzqwbjmae", "cancel": "https://api.replicate.com/v1/predictions/b45x4x3bivf4vfpw6mzqwbjmae/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 42626 Prompt: Anthropomorphic cat dressed as a firefighter 0%| | 0/30 [00:00<?, ?it/s] 17%|█▋ | 5/30 [00:00<00:00, 41.48it/s] 33%|███▎ | 10/30 [00:00<00:00, 41.55it/s] 50%|█████ | 15/30 [00:00<00:00, 41.52it/s] 67%|██████▋ | 20/30 [00:00<00:00, 41.51it/s] 83%|████████▎ | 25/30 [00:00<00:00, 41.51it/s] 100%|██████████| 30/30 [00:00<00:00, 41.48it/s] 100%|██████████| 30/30 [00:00<00:00, 41.48it/s] 0%| | 0/12 [00:00<?, ?it/s] 25%|██▌ | 3/12 [00:00<00:00, 23.92it/s] 50%|█████ | 6/12 [00:00<00:00, 23.92it/s] 75%|███████▌ | 9/12 [00:00<00:00, 23.90it/s] 100%|██████████| 12/12 [00:00<00:00, 23.90it/s] 100%|██████████| 12/12 [00:00<00:00, 23.89it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDu3ziuttbmskqjc5l67lnvzfdsmStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 20138
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic cat dressed as a firefighter
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 20138, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { seed: 20138, width: 1024, height: 1024, prompt: "Anthropomorphic cat dressed as a firefighter", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "seed": 20138, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "seed": 20138, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'seed=20138' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic cat dressed as a firefighter"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 20138, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:35:01.724198Z", "created_at": "2023-09-14T08:34:58.730325Z", "data_removed": false, "error": null, "id": "u3ziuttbmskqjc5l67lnvzfdsm", "input": { "seed": 20138, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 20138\nPrompt: Anthropomorphic cat dressed as a firefighter\n 0%| | 0/30 [00:00<?, ?it/s]\n 17%|█▋ | 5/30 [00:00<00:00, 41.44it/s]\n 33%|███▎ | 10/30 [00:00<00:00, 41.52it/s]\n 50%|█████ | 15/30 [00:00<00:00, 41.56it/s]\n 67%|██████▋ | 20/30 [00:00<00:00, 41.56it/s]\n 83%|████████▎ | 25/30 [00:00<00:00, 41.56it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.56it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.54it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 23.94it/s]\n 50%|█████ | 6/12 [00:00<00:00, 23.75it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 23.76it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.82it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.80it/s]", "metrics": { "predict_time": 2.985468, "total_time": 2.993873 }, "output": [ "https://pbxt.replicate.delivery/T5B4QLfM09RyNKImL25vO9H3qLiLUMEbDmmsDPBwjJEavDyIA/out-0.png" ], "started_at": "2023-09-14T08:34:58.738730Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/u3ziuttbmskqjc5l67lnvzfdsm", "cancel": "https://api.replicate.com/v1/predictions/u3ziuttbmskqjc5l67lnvzfdsm/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 20138 Prompt: Anthropomorphic cat dressed as a firefighter 0%| | 0/30 [00:00<?, ?it/s] 17%|█▋ | 5/30 [00:00<00:00, 41.44it/s] 33%|███▎ | 10/30 [00:00<00:00, 41.52it/s] 50%|█████ | 15/30 [00:00<00:00, 41.56it/s] 67%|██████▋ | 20/30 [00:00<00:00, 41.56it/s] 83%|████████▎ | 25/30 [00:00<00:00, 41.56it/s] 100%|██████████| 30/30 [00:00<00:00, 41.56it/s] 100%|██████████| 30/30 [00:00<00:00, 41.54it/s] 0%| | 0/12 [00:00<?, ?it/s] 25%|██▌ | 3/12 [00:00<00:00, 23.94it/s] 50%|█████ | 6/12 [00:00<00:00, 23.75it/s] 75%|███████▌ | 9/12 [00:00<00:00, 23.76it/s] 100%|██████████| 12/12 [00:00<00:00, 23.82it/s] 100%|██████████| 12/12 [00:00<00:00, 23.80it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fID3h6ziktbttybf25gomguv6olj4StatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 60496
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic cat dressed as a firefighter
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 60496, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { seed: 60496, width: 1024, height: 1024, prompt: "Anthropomorphic cat dressed as a firefighter", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "seed": 60496, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "seed": 60496, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'seed=60496' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic cat dressed as a firefighter"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 60496, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:34:54.413114Z", "created_at": "2023-09-14T08:34:47.345915Z", "data_removed": false, "error": null, "id": "3h6ziktbttybf25gomguv6olj4", "input": { "seed": 60496, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 60496\nPrompt: Anthropomorphic cat dressed as a firefighter\n 0%| | 0/30 [00:00<?, ?it/s]\n 17%|█▋ | 5/30 [00:00<00:00, 41.39it/s]\n 33%|███▎ | 10/30 [00:00<00:00, 41.39it/s]\n 50%|█████ | 15/30 [00:00<00:00, 40.56it/s]\n 67%|██████▋ | 20/30 [00:00<00:00, 40.87it/s]\n 83%|████████▎ | 25/30 [00:00<00:00, 41.06it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.20it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.09it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 23.92it/s]\n 50%|█████ | 6/12 [00:00<00:00, 23.80it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 23.84it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.85it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.84it/s]", "metrics": { "predict_time": 2.949607, "total_time": 7.067199 }, "output": [ "https://pbxt.replicate.delivery/86miIREQBoakBRQBfTY25dcmKNBW1DTjeXzkSv42pABteOIjA/out-0.png" ], "started_at": "2023-09-14T08:34:51.463507Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/3h6ziktbttybf25gomguv6olj4", "cancel": "https://api.replicate.com/v1/predictions/3h6ziktbttybf25gomguv6olj4/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 60496 Prompt: Anthropomorphic cat dressed as a firefighter 0%| | 0/30 [00:00<?, ?it/s] 17%|█▋ | 5/30 [00:00<00:00, 41.39it/s] 33%|███▎ | 10/30 [00:00<00:00, 41.39it/s] 50%|█████ | 15/30 [00:00<00:00, 40.56it/s] 67%|██████▋ | 20/30 [00:00<00:00, 40.87it/s] 83%|████████▎ | 25/30 [00:00<00:00, 41.06it/s] 100%|██████████| 30/30 [00:00<00:00, 41.20it/s] 100%|██████████| 30/30 [00:00<00:00, 41.09it/s] 0%| | 0/12 [00:00<?, ?it/s] 25%|██▌ | 3/12 [00:00<00:00, 23.92it/s] 50%|█████ | 6/12 [00:00<00:00, 23.80it/s] 75%|███████▌ | 9/12 [00:00<00:00, 23.84it/s] 100%|██████████| 12/12 [00:00<00:00, 23.85it/s] 100%|██████████| 12/12 [00:00<00:00, 23.84it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDvrxx7qtbjr7pquls5s46sihbzmStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 40951
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic cat dressed as a firefighter
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 40951, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { seed: 40951, width: 1024, height: 1024, prompt: "Anthropomorphic cat dressed as a firefighter", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "seed": 40951, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "seed": 40951, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'seed=40951' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic cat dressed as a firefighter"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 40951, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:34:41.657362Z", "created_at": "2023-09-14T08:34:38.694652Z", "data_removed": false, "error": null, "id": "vrxx7qtbjr7pquls5s46sihbzm", "input": { "seed": 40951, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 40951\nPrompt: Anthropomorphic cat dressed as a firefighter\n 0%| | 0/30 [00:00<?, ?it/s]\n 17%|█▋ | 5/30 [00:00<00:00, 41.36it/s]\n 33%|███▎ | 10/30 [00:00<00:00, 41.17it/s]\n 50%|█████ | 15/30 [00:00<00:00, 41.18it/s]\n 67%|██████▋ | 20/30 [00:00<00:00, 41.06it/s]\n 83%|████████▎ | 25/30 [00:00<00:00, 41.21it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.31it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.23it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 23.63it/s]\n 50%|█████ | 6/12 [00:00<00:00, 23.74it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 23.71it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.76it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.73it/s]", "metrics": { "predict_time": 2.991572, "total_time": 2.96271 }, "output": [ "https://pbxt.replicate.delivery/nERk97aCdtIgCdQfcYQHuk5ftE8tVZH6flLf4zBXayuA6dQGB/out-0.png" ], "started_at": "2023-09-14T08:34:38.665790Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/vrxx7qtbjr7pquls5s46sihbzm", "cancel": "https://api.replicate.com/v1/predictions/vrxx7qtbjr7pquls5s46sihbzm/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 40951 Prompt: Anthropomorphic cat dressed as a firefighter 0%| | 0/30 [00:00<?, ?it/s] 17%|█▋ | 5/30 [00:00<00:00, 41.36it/s] 33%|███▎ | 10/30 [00:00<00:00, 41.17it/s] 50%|█████ | 15/30 [00:00<00:00, 41.18it/s] 67%|██████▋ | 20/30 [00:00<00:00, 41.06it/s] 83%|████████▎ | 25/30 [00:00<00:00, 41.21it/s] 100%|██████████| 30/30 [00:00<00:00, 41.31it/s] 100%|██████████| 30/30 [00:00<00:00, 41.23it/s] 0%| | 0/12 [00:00<?, ?it/s] 25%|██▌ | 3/12 [00:00<00:00, 23.63it/s] 50%|█████ | 6/12 [00:00<00:00, 23.74it/s] 75%|███████▌ | 9/12 [00:00<00:00, 23.71it/s] 100%|██████████| 12/12 [00:00<00:00, 23.76it/s] 100%|██████████| 12/12 [00:00<00:00, 23.73it/s]
Prediction
pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3fIDpfk6sytbqbd7g6lz2xud7clnyuStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 10352
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic cat dressed as a firefighter
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", { input: { seed: 10352, width: 1024, height: 1024, prompt: "Anthropomorphic cat dressed as a firefighter", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", input={ "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f", "input": { "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
You can run this model locally using Cog. First, install Cog:brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f \ -i 'seed=10352' \ -i 'width=1024' \ -i 'height=1024' \ -i 'prompt="Anthropomorphic cat dressed as a firefighter"' \ -i 'num_outputs=1' \ -i 'num_inference_steps=12' \ -i 'prior_guidance_scale=4' \ -i 'decoder_guidance_scale=0' \ -i 'prior_num_inference_steps=30'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/pagebrain/wuerstchen-v2@sha256:fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Output
{ "completed_at": "2023-09-14T08:34:36.622366Z", "created_at": "2023-09-14T08:34:33.525537Z", "data_removed": false, "error": null, "id": "pfk6sytbqbd7g6lz2xud7clnyu", "input": { "seed": 10352, "width": 1024, "height": 1024, "prompt": "Anthropomorphic cat dressed as a firefighter", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 10352\nPrompt: Anthropomorphic cat dressed as a firefighter\n 0%| | 0/30 [00:00<?, ?it/s]\n 13%|█▎ | 4/30 [00:00<00:00, 39.85it/s]\n 30%|███ | 9/30 [00:00<00:00, 40.64it/s]\n 47%|████▋ | 14/30 [00:00<00:00, 40.79it/s]\n 63%|██████▎ | 19/30 [00:00<00:00, 41.11it/s]\n 80%|████████ | 24/30 [00:00<00:00, 41.28it/s]\n 97%|█████████▋| 29/30 [00:00<00:00, 41.33it/s]\n100%|██████████| 30/30 [00:00<00:00, 41.03it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 25%|██▌ | 3/12 [00:00<00:00, 23.27it/s]\n 50%|█████ | 6/12 [00:00<00:00, 23.60it/s]\n 75%|███████▌ | 9/12 [00:00<00:00, 23.72it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.67it/s]\n100%|██████████| 12/12 [00:00<00:00, 23.62it/s]", "metrics": { "predict_time": 3.09179, "total_time": 3.096829 }, "output": [ "https://pbxt.replicate.delivery/kj89UmN5TxqONlsVYZroujfzs8HO0QHWrBwcaqNccZebeOIjA/out-0.png" ], "started_at": "2023-09-14T08:34:33.530576Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/pfk6sytbqbd7g6lz2xud7clnyu", "cancel": "https://api.replicate.com/v1/predictions/pfk6sytbqbd7g6lz2xud7clnyu/cancel" }, "version": "fba2b69c67341c193ffda8710f484d79ee93846ba5c539d1c9af515145f9bd3f" }
Generated inUsing seed: 10352 Prompt: Anthropomorphic cat dressed as a firefighter 0%| | 0/30 [00:00<?, ?it/s] 13%|█▎ | 4/30 [00:00<00:00, 39.85it/s] 30%|███ | 9/30 [00:00<00:00, 40.64it/s] 47%|████▋ | 14/30 [00:00<00:00, 40.79it/s] 63%|██████▎ | 19/30 [00:00<00:00, 41.11it/s] 80%|████████ | 24/30 [00:00<00:00, 41.28it/s] 97%|█████████▋| 29/30 [00:00<00:00, 41.33it/s] 100%|██████████| 30/30 [00:00<00:00, 41.03it/s] 0%| | 0/12 [00:00<?, ?it/s] 25%|██▌ | 3/12 [00:00<00:00, 23.27it/s] 50%|█████ | 6/12 [00:00<00:00, 23.60it/s] 75%|███████▌ | 9/12 [00:00<00:00, 23.72it/s] 100%|██████████| 12/12 [00:00<00:00, 23.67it/s] 100%|██████████| 12/12 [00:00<00:00, 23.62it/s]
Prediction
pagebrain/wuerstchen-v2:0725c5f70905b87ffadd7d6fe4cfae1b5457784d911eebd8521022892deb481aIDyetdezjbedldgfhnmq2oe5x4yqStatusSucceededSourceWebHardwareA100 (40GB)Total durationCreatedby @korneshInput
- seed
- 39564
- width
- 1024
- height
- 1024
- prompt
- Anthropomorphic chicken dressed as an officer
- num_outputs
- 1
- num_inference_steps
- 12
- prior_guidance_scale
- 4
- decoder_guidance_scale
- 0
- prior_num_inference_steps
- 30
{ "seed": 39564, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; import fs from "node:fs"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pagebrain/wuerstchen-v2:0725c5f70905b87ffadd7d6fe4cfae1b5457784d911eebd8521022892deb481a", { input: { seed: 39564, width: 1024, height: 1024, prompt: "Anthropomorphic chicken dressed as an officer", num_outputs: 1, num_inference_steps: 12, prior_guidance_scale: 4, decoder_guidance_scale: 0, prior_num_inference_steps: 30 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pagebrain/wuerstchen-v2:0725c5f70905b87ffadd7d6fe4cfae1b5457784d911eebd8521022892deb481a", input={ "seed": 39564, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } ) # To access the file URL: print(output[0].url()) #=> "http://example.com" # To write the file to disk: with open("my-image.png", "wb") as file: file.write(output[0].read())
To learn more, take a look at the guide on getting started with Python.
Run pagebrain/wuerstchen-v2 using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "pagebrain/wuerstchen-v2:0725c5f70905b87ffadd7d6fe4cfae1b5457784d911eebd8521022892deb481a", "input": { "seed": 39564, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-16T06:43:30.217513Z", "created_at": "2023-09-16T06:43:26.376094Z", "data_removed": false, "error": null, "id": "yetdezjbedldgfhnmq2oe5x4yq", "input": { "seed": 39564, "width": 1024, "height": 1024, "prompt": "Anthropomorphic chicken dressed as an officer", "num_outputs": 1, "num_inference_steps": 12, "prior_guidance_scale": 4, "decoder_guidance_scale": 0, "prior_num_inference_steps": 30 }, "logs": "Using seed: 39564\nPrompt: Anthropomorphic chicken dressed as an officer\n 0%| | 0/30 [00:00<?, ?it/s]\n 10%|█ | 3/30 [00:00<00:01, 20.60it/s]\n 20%|██ | 6/30 [00:00<00:01, 21.28it/s]\n 30%|███ | 9/30 [00:00<00:00, 21.40it/s]\n 40%|████ | 12/30 [00:00<00:00, 21.46it/s]\n 50%|█████ | 15/30 [00:00<00:00, 21.38it/s]\n 60%|██████ | 18/30 [00:00<00:00, 21.50it/s]\n 70%|███████ | 21/30 [00:00<00:00, 21.32it/s]\n 80%|████████ | 24/30 [00:01<00:00, 21.55it/s]\n 90%|█████████ | 27/30 [00:01<00:00, 21.61it/s]\n100%|██████████| 30/30 [00:01<00:00, 21.70it/s]\n100%|██████████| 30/30 [00:01<00:00, 21.50it/s]\n 0%| | 0/12 [00:00<?, ?it/s]\n 17%|█▋ | 2/12 [00:00<00:00, 12.24it/s]\n 33%|███▎ | 4/12 [00:00<00:00, 12.83it/s]\n 50%|█████ | 6/12 [00:00<00:00, 13.03it/s]\n 67%|██████▋ | 8/12 [00:00<00:00, 13.19it/s]\n 83%|████████▎ | 10/12 [00:00<00:00, 13.21it/s]\n100%|██████████| 12/12 [00:00<00:00, 13.30it/s]\n100%|██████████| 12/12 [00:00<00:00, 13.14it/s]", "metrics": { "predict_time": 3.879448, "total_time": 3.841419 }, "output": [ "https://pbxt.replicate.delivery/e2U2mWZ6NTQhFqZeeX8U8TxLIuffsNBSxGKSSHlpJ6COSAmMC/out-0.png" ], "started_at": "2023-09-16T06:43:26.338065Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/yetdezjbedldgfhnmq2oe5x4yq", "cancel": "https://api.replicate.com/v1/predictions/yetdezjbedldgfhnmq2oe5x4yq/cancel" }, "version": "0725c5f70905b87ffadd7d6fe4cfae1b5457784d911eebd8521022892deb481a" }
Generated inUsing seed: 39564 Prompt: Anthropomorphic chicken dressed as an officer 0%| | 0/30 [00:00<?, ?it/s] 10%|█ | 3/30 [00:00<00:01, 20.60it/s] 20%|██ | 6/30 [00:00<00:01, 21.28it/s] 30%|███ | 9/30 [00:00<00:00, 21.40it/s] 40%|████ | 12/30 [00:00<00:00, 21.46it/s] 50%|█████ | 15/30 [00:00<00:00, 21.38it/s] 60%|██████ | 18/30 [00:00<00:00, 21.50it/s] 70%|███████ | 21/30 [00:00<00:00, 21.32it/s] 80%|████████ | 24/30 [00:01<00:00, 21.55it/s] 90%|█████████ | 27/30 [00:01<00:00, 21.61it/s] 100%|██████████| 30/30 [00:01<00:00, 21.70it/s] 100%|██████████| 30/30 [00:01<00:00, 21.50it/s] 0%| | 0/12 [00:00<?, ?it/s] 17%|█▋ | 2/12 [00:00<00:00, 12.24it/s] 33%|███▎ | 4/12 [00:00<00:00, 12.83it/s] 50%|█████ | 6/12 [00:00<00:00, 13.03it/s] 67%|██████▋ | 8/12 [00:00<00:00, 13.19it/s] 83%|████████▎ | 10/12 [00:00<00:00, 13.21it/s] 100%|██████████| 12/12 [00:00<00:00, 13.30it/s] 100%|██████████| 12/12 [00:00<00:00, 13.14it/s]
Want to make some of these yourself?
Run this model