Readme
This is a Cog implementation test for Language model streaming. The model is from Openbuddy finetuned mistral-7b in GPTQ quantization in 4bits by TheBloke.
Openbuddy finetuned mistral-7b in GPTQ quantization in 4bits by TheBloke
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run peter65374/openbuddy-mistral-7b using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"peter65374/openbuddy-mistral-7b:8199f01fa38cf1b42ff59f231f0ed05fc5214fce4065c7ea33d2fadc79d90f11",
{
input: {
debug: true,
top_k: 40,
top_p: 0.95,
prompt: "Problem statement: \"\"\"一个盒子里有4个红球和6个蓝球。从盒子里不放回地抽出两个球。求一个球是红色,另一个球是蓝色的概率是多少?\"\"\"\n\nCorrect solution: \"\"\"我们可以先抽出红球,然后抽出蓝球,也可以先抽出蓝球,然后抽出红球。所以,我们需要把这两种情况的概率加起来。\n\n先抽出红球,然后抽出蓝球的概率是 (4/10)*(6/9) = 24/90 = 4/15。\n\n先抽出蓝球,然后抽出红球的概率是 (6/10)*(4/9) = 24/90 = 4/15。\n\n所以,一个球是红色,另一个球是蓝色的概率是 4/15 + 4/15 = 8/15。\"\"\n\nStudent’s solution: \"\"\"(4/10)*(6/9) = 24/90 = 4/15\"\"\"\n---\n请根据上面题目的标准答案和学生的回答,针对这道题给学生辅导.",
do_sample: true,
num_beams: 1,
temperature: 0.7,
padding_mode: true,
max_new_tokens: 1024,
prompt_template: "You are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages.\nUser: Hi\nAssistant: Hello, how can I help you?</s>\nUser: {prompt}\nAssistant:",
repetition_penalty: 1
}
}
);
console.log(output);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run peter65374/openbuddy-mistral-7b using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"peter65374/openbuddy-mistral-7b:8199f01fa38cf1b42ff59f231f0ed05fc5214fce4065c7ea33d2fadc79d90f11",
input={
"debug": True,
"top_k": 40,
"top_p": 0.95,
"prompt": "Problem statement: \"\"\"一个盒子里有4个红球和6个蓝球。从盒子里不放回地抽出两个球。求一个球是红色,另一个球是蓝色的概率是多少?\"\"\"\n\nCorrect solution: \"\"\"我们可以先抽出红球,然后抽出蓝球,也可以先抽出蓝球,然后抽出红球。所以,我们需要把这两种情况的概率加起来。\n\n先抽出红球,然后抽出蓝球的概率是 (4/10)*(6/9) = 24/90 = 4/15。\n\n先抽出蓝球,然后抽出红球的概率是 (6/10)*(4/9) = 24/90 = 4/15。\n\n所以,一个球是红色,另一个球是蓝色的概率是 4/15 + 4/15 = 8/15。\"\"\n\nStudent’s solution: \"\"\"(4/10)*(6/9) = 24/90 = 4/15\"\"\"\n---\n请根据上面题目的标准答案和学生的回答,针对这道题给学生辅导.",
"do_sample": True,
"num_beams": 1,
"temperature": 0.7,
"padding_mode": True,
"max_new_tokens": 1024,
"prompt_template": "You are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages.\nUser: Hi\nAssistant: Hello, how can I help you?</s>\nUser: {prompt}\nAssistant:",
"repetition_penalty": 1
}
)
# The peter65374/openbuddy-mistral-7b model can stream output as it's running.
# The predict method returns an iterator, and you can iterate over that output.
for item in output:
# https://replicate.com/peter65374/openbuddy-mistral-7b/api#output-schema
print(item, end="")
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run peter65374/openbuddy-mistral-7b using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "peter65374/openbuddy-mistral-7b:8199f01fa38cf1b42ff59f231f0ed05fc5214fce4065c7ea33d2fadc79d90f11",
"input": {
"debug": true,
"top_k": 40,
"top_p": 0.95,
"prompt": "Problem statement: \\"\\"\\"一个盒子里有4个红球和6个蓝球。从盒子里不放回地抽出两个球。求一个球是红色,另一个球是蓝色的概率是多少?\\"\\"\\"\\n\\nCorrect solution: \\"\\"\\"我们可以先抽出红球,然后抽出蓝球,也可以先抽出蓝球,然后抽出红球。所以,我们需要把这两种情况的概率加起来。\\n\\n先抽出红球,然后抽出蓝球的概率是 (4/10)*(6/9) = 24/90 = 4/15。\\n\\n先抽出蓝球,然后抽出红球的概率是 (6/10)*(4/9) = 24/90 = 4/15。\\n\\n所以,一个球是红色,另一个球是蓝色的概率是 4/15 + 4/15 = 8/15。\\"\\"\\n\\nStudent’s solution: \\"\\"\\"(4/10)*(6/9) = 24/90 = 4/15\\"\\"\\"\\n---\\n请根据上面题目的标准答案和学生的回答,针对这道题给学生辅导.",
"do_sample": true,
"num_beams": 1,
"temperature": 0.7,
"padding_mode": true,
"max_new_tokens": 1024,
"prompt_template": "You are a helpful high school Math tutor. If you don\'t know the answer to a question, please don\'t share false information. You can speak fluently in many languages.\\nUser: Hi\\nAssistant: Hello, how can I help you?</s>\\nUser: {prompt}\\nAssistant:",
"repetition_penalty": 1
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2023-10-27T09:14:39.025601Z",
"created_at": "2023-10-27T09:14:10.926189Z",
"data_removed": false,
"error": null,
"id": "h6frmvlb2xqhjrzqfucgujm73y",
"input": {
"debug": true,
"top_k": 40,
"top_p": 0.95,
"prompt": "Problem statement: \"\"\"一个盒子里有4个红球和6个蓝球。从盒子里不放回地抽出两个球。求一个球是红色,另一个球是蓝色的概率是多少?\"\"\"\n\nCorrect solution: \"\"\"我们可以先抽出红球,然后抽出蓝球,也可以先抽出蓝球,然后抽出红球。所以,我们需要把这两种情况的概率加起来。\n\n先抽出红球,然后抽出蓝球的概率是 (4/10)*(6/9) = 24/90 = 4/15。\n\n先抽出蓝球,然后抽出红球的概率是 (6/10)*(4/9) = 24/90 = 4/15。\n\n所以,一个球是红色,另一个球是蓝色的概率是 4/15 + 4/15 = 8/15。\"\"\n\nStudent’s solution: \"\"\"(4/10)*(6/9) = 24/90 = 4/15\"\"\"\n---\n请根据上面题目的标准答案和学生的回答,针对这道题给学生辅导.",
"do_sample": true,
"num_beams": 1,
"temperature": 0.7,
"padding_mode": true,
"max_new_tokens": 1024,
"prompt_template": "You are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages.\nUser: Hi\nAssistant: Hello, how can I help you?</s>\nUser: {prompt}\nAssistant:",
"repetition_penalty": 1
},
"logs": "Your formatted prompt is:\nYou are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages.\nUser: Hi\nAssistant: Hello, how can I help you?</s>\nUser: Problem statement: \"\"\"一个盒子里有4个红球和6个蓝球。从盒子里不放回地抽出两个球。求一个球是红色,另一个球是蓝色的概率是多少?\"\"\"\nCorrect solution: \"\"\"我们可以先抽出红球,然后抽出蓝球,也可以先抽出蓝球,然后抽出红球。所以,我们需要把这两种情况的概率加起来。\n先抽出红球,然后抽出蓝球的概率是 (4/10)*(6/9) = 24/90 = 4/15。\n先抽出蓝球,然后抽出红球的概率是 (6/10)*(4/9) = 24/90 = 4/15。\n所以,一个球是红色,另一个球是蓝色的概率是 4/15 + 4/15 = 8/15。\"\"\nStudent’s solution: \"\"\"(4/10)*(6/9) = 24/90 = 4/15\"\"\"\n---\n请根据上面题目的标准答案和学生的回答,针对这道题给学生辅导.\nAssistant:\nSetting `pad_token_id` to `eos_token_id`:2 for open-end generation.\nafter initialization, first token took 0.108\n好\n的\n,让\n我\n们\n来\n看\n一\n下\n这\n道\n题\n。\n题\n目\n要\n求\n我\n们\n计\n算\n一个\n球\n是\n红\n色\n,另\n一个\n球\n是\n蓝\n色\n的\n概\n率\n。这\n个\n问\n题\n可\n以\n通\n过\n条\n件\n概\n率\n公\n式\n来\n解\n决\n。\n我\n们\n可\n以\n先\n抽\n出\n红\n球\n,然\n后\n再\n抽\n出\n蓝\n球\n,也\n可\n以\n先\n抽\n出\n蓝\n球\n,然\n后\n再\n抽\n出\n红\n球\n。所\n以\n,我\n们\n需\n要\n把\n这\n两\n种\n情\n况\n的\n概\n率\n加\n起\n来\n。\n如\n果\n我\n们\n先\n抽\n出\n红\n球\n,然\n后\n再\n抽\n出\n蓝\n球\n,那\n么\n这\n两\n次\n抽\n球\n的\n概\n率\n分\n别\n是\n(4/10)\n和\n(6/9)。这\n时\n候\n,我\n们\n需\n要\n将\n它\n们\n相\n乘\n,得\n到\n的\n结\n果\n是\n(4/10)*(6/9)\n=\n24/90\n=\n4/15。\n如\n果\n我\n们\n先\n抽\n出\n蓝\n球\n,然\n后\n再\n抽\n出\n红\n球\n,那\n么\n这\n两\n次\n抽\n球\n的\n概\n率\n分\n别\n是\n(6/10)\n和\n(4/9)。这\n时\n候\n,我\n们\n同\n样\n需\n要\n将\n它\n们\n相\n乘\n,得\n到\n的\n结\n果\n是\n(6/10)*(4/9)\n=\n24/90\n=\n4/15。\n最\n后\n,我\n们\n将\n这\n两\n种\n情\n况\n的\n概\n率\n相\n加\n,得\n到\n的\n结\n果\n是\n(4/15)\n+\n(4/15)\n= \n8/15。\n所\n以\n,一个\n球\n是\n红\n色\n,另\n一个\n球\n是\n蓝\n色\n的\n概\n率\n是\n8/15。\nFinal output:好的,让我们来看一下这道题。\n题目要求我们计算一个球是红色,另一个球是蓝色的概率。这个问题可以通过条件概率公式来解决。\n我们可以先抽出红球,然后再抽出蓝球,也可以先抽出蓝球,然后再抽出红球。所以,我们需要把这两种情况的概率加起来。\n如果我们先抽出红球,然后再抽出蓝球,那么这两次抽球的概率分别是 (4/10) 和 (6/9)。这时候,我们需要将它们相乘,得到的结果是 (4/10)*(6/9) = 24/90 = 4/15。\n如果我们先抽出蓝球,然后再抽出红球,那么这两次抽球的概率分别是 (6/10) 和 (4/9)。这时候,我们同样需要将它们相乘,得到的结果是 (6/10)*(4/9) = 24/90 = 4/15。\n最后,我们将这两种情况的概率相加,得到的结果是 (4/15) + (4/15) = 8/15。\n所以,一个球是红色,另一个球是蓝色的概率是 8/15。\nGenerated in 11.99962306022644 seconds.\nTokens per second: 31.42\nTokens per second not including time to first token: 31.62\ncur memory: 5152501248\nmax allocated: 5206267904\npeak memory: 5364514816",
"metrics": {
"predict_time": 28.120445,
"total_time": 28.099412
},
"output": [
"",
"好",
"的",
"",
",让",
"我",
"们",
"来",
"看",
"一",
"下",
"这",
"道",
"题",
"",
"。\n",
"\n",
"题",
"目",
"要",
"求",
"我",
"们",
"计",
"算",
"一个",
"球",
"是",
"红",
"色",
"",
",另",
"一个",
"球",
"是",
"蓝",
"色",
"的",
"概",
"率",
"",
"。这",
"个",
"问",
"题",
"可",
"以",
"通",
"过",
"条",
"件",
"概",
"率",
"公",
"式",
"来",
"解",
"决",
"",
"。\n",
"\n",
"我",
"们",
"可",
"以",
"先",
"抽",
"出",
"红",
"球",
"",
",然",
"后",
"再",
"抽",
"出",
"蓝",
"球",
"",
",也",
"可",
"以",
"先",
"抽",
"出",
"蓝",
"球",
"",
",然",
"后",
"再",
"抽",
"出",
"红",
"球",
"",
"。所",
"以",
"",
",我",
"们",
"需",
"要",
"把",
"这",
"两",
"种",
"情",
"况",
"的",
"概",
"率",
"加",
"起",
"来",
"",
"。\n",
"\n",
"如",
"果",
"我",
"们",
"先",
"抽",
"出",
"红",
"球",
"",
",然",
"后",
"再",
"抽",
"出",
"蓝",
"球",
"",
",那",
"么",
"这",
"两",
"次",
"抽",
"球",
"的",
"概",
"率",
"分",
"别",
"是",
" ",
"",
"",
"",
"",
"",
"(4/10) ",
"和",
" ",
"",
"",
"",
"",
"",
"(6/9)。这",
"时",
"候",
"",
",我",
"们",
"需",
"要",
"将",
"它",
"们",
"相",
"乘",
"",
",得",
"到",
"的",
"结",
"果",
"是",
" ",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"(4/10)*(6/9) ",
"= ",
"",
"",
"",
"",
"",
"24/90 ",
"= ",
"",
"",
"",
"",
"",
"4/15。\n",
"\n",
"如",
"果",
"我",
"们",
"先",
"抽",
"出",
"蓝",
"球",
"",
",然",
"后",
"再",
"抽",
"出",
"红",
"球",
"",
",那",
"么",
"这",
"两",
"次",
"抽",
"球",
"的",
"概",
"率",
"分",
"别",
"是",
" ",
"",
"",
"",
"",
"",
"(6/10) ",
"和",
" ",
"",
"",
"",
"",
"",
"(4/9)。这",
"时",
"候",
"",
",我",
"们",
"同",
"样",
"需",
"要",
"将",
"它",
"们",
"相",
"乘",
"",
",得",
"到",
"的",
"结",
"果",
"是",
" ",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"",
"(6/10)*(4/9) ",
"= ",
"",
"",
"",
"",
"",
"24/90 ",
"= ",
"",
"",
"",
"",
"",
"4/15。\n",
"\n",
"最",
"后",
"",
",我",
"们",
"将",
"这",
"两",
"种",
"情",
"况",
"的",
"概",
"率",
"相",
"加",
"",
",得",
"到",
"的",
"结",
"果",
"是",
" ",
"",
"",
"",
"",
"",
"(4/15) ",
"+ ",
"",
"",
"",
"",
"",
"(4/15) ",
"= ",
"",
"",
"",
"",
"",
"8/15。\n",
"\n",
"所",
"以",
"",
",一个",
"球",
"是",
"红",
"色",
"",
",另",
"一个",
"球",
"是",
"蓝",
"色",
"的",
"概",
"率",
"是",
" ",
"",
"",
"",
"",
"",
"8/15。\n",
"",
""
],
"started_at": "2023-10-27T09:14:10.905156Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/h6frmvlb2xqhjrzqfucgujm73y",
"cancel": "https://api.replicate.com/v1/predictions/h6frmvlb2xqhjrzqfucgujm73y/cancel"
},
"version": "8199f01fa38cf1b42ff59f231f0ed05fc5214fce4065c7ea33d2fadc79d90f11"
}
Your formatted prompt is:
You are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages.
User: Hi
Assistant: Hello, how can I help you?</s>
User: Problem statement: """一个盒子里有4个红球和6个蓝球。从盒子里不放回地抽出两个球。求一个球是红色,另一个球是蓝色的概率是多少?"""
Correct solution: """我们可以先抽出红球,然后抽出蓝球,也可以先抽出蓝球,然后抽出红球。所以,我们需要把这两种情况的概率加起来。
先抽出红球,然后抽出蓝球的概率是 (4/10)*(6/9) = 24/90 = 4/15。
先抽出蓝球,然后抽出红球的概率是 (6/10)*(4/9) = 24/90 = 4/15。
所以,一个球是红色,另一个球是蓝色的概率是 4/15 + 4/15 = 8/15。""
Student’s solution: """(4/10)*(6/9) = 24/90 = 4/15"""
---
请根据上面题目的标准答案和学生的回答,针对这道题给学生辅导.
Assistant:
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.
after initialization, first token took 0.108
好
的
,让
我
们
来
看
一
下
这
道
题
。
题
目
要
求
我
们
计
算
一个
球
是
红
色
,另
一个
球
是
蓝
色
的
概
率
。这
个
问
题
可
以
通
过
条
件
概
率
公
式
来
解
决
。
我
们
可
以
先
抽
出
红
球
,然
后
再
抽
出
蓝
球
,也
可
以
先
抽
出
蓝
球
,然
后
再
抽
出
红
球
。所
以
,我
们
需
要
把
这
两
种
情
况
的
概
率
加
起
来
。
如
果
我
们
先
抽
出
红
球
,然
后
再
抽
出
蓝
球
,那
么
这
两
次
抽
球
的
概
率
分
别
是
(4/10)
和
(6/9)。这
时
候
,我
们
需
要
将
它
们
相
乘
,得
到
的
结
果
是
(4/10)*(6/9)
=
24/90
=
4/15。
如
果
我
们
先
抽
出
蓝
球
,然
后
再
抽
出
红
球
,那
么
这
两
次
抽
球
的
概
率
分
别
是
(6/10)
和
(4/9)。这
时
候
,我
们
同
样
需
要
将
它
们
相
乘
,得
到
的
结
果
是
(6/10)*(4/9)
=
24/90
=
4/15。
最
后
,我
们
将
这
两
种
情
况
的
概
率
相
加
,得
到
的
结
果
是
(4/15)
+
(4/15)
=
8/15。
所
以
,一个
球
是
红
色
,另
一个
球
是
蓝
色
的
概
率
是
8/15。
Final output:好的,让我们来看一下这道题。
题目要求我们计算一个球是红色,另一个球是蓝色的概率。这个问题可以通过条件概率公式来解决。
我们可以先抽出红球,然后再抽出蓝球,也可以先抽出蓝球,然后再抽出红球。所以,我们需要把这两种情况的概率加起来。
如果我们先抽出红球,然后再抽出蓝球,那么这两次抽球的概率分别是 (4/10) 和 (6/9)。这时候,我们需要将它们相乘,得到的结果是 (4/10)*(6/9) = 24/90 = 4/15。
如果我们先抽出蓝球,然后再抽出红球,那么这两次抽球的概率分别是 (6/10) 和 (4/9)。这时候,我们同样需要将它们相乘,得到的结果是 (6/10)*(4/9) = 24/90 = 4/15。
最后,我们将这两种情况的概率相加,得到的结果是 (4/15) + (4/15) = 8/15。
所以,一个球是红色,另一个球是蓝色的概率是 8/15。
Generated in 11.99962306022644 seconds.
Tokens per second: 31.42
Tokens per second not including time to first token: 31.62
cur memory: 5152501248
max allocated: 5206267904
peak memory: 5364514816
This model costs approximately $0.061 to run on Replicate, or 16 runs per $1, but this varies depending on your inputs. It is also open source and you can run it on your own computer with Docker.
This model runs on Nvidia L40S GPU hardware. Predictions typically complete within 63 seconds. The predict time for this model varies significantly based on the inputs.
This is a Cog implementation test for Language model streaming. The model is from Openbuddy finetuned mistral-7b in GPTQ quantization in 4bits by TheBloke.
This model is cold. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model costs approximately $0.061 to run on Replicate, but this varies depending on your inputs. View more.
Your formatted prompt is:
You are a helpful high school Math tutor. If you don't know the answer to a question, please don't share false information. You can speak fluently in many languages.
User: Hi
Assistant: Hello, how can I help you?</s>
User: Problem statement: """一个盒子里有4个红球和6个蓝球。从盒子里不放回地抽出两个球。求一个球是红色,另一个球是蓝色的概率是多少?"""
Correct solution: """我们可以先抽出红球,然后抽出蓝球,也可以先抽出蓝球,然后抽出红球。所以,我们需要把这两种情况的概率加起来。
先抽出红球,然后抽出蓝球的概率是 (4/10)*(6/9) = 24/90 = 4/15。
先抽出蓝球,然后抽出红球的概率是 (6/10)*(4/9) = 24/90 = 4/15。
所以,一个球是红色,另一个球是蓝色的概率是 4/15 + 4/15 = 8/15。""
Student’s solution: """(4/10)*(6/9) = 24/90 = 4/15"""
---
请根据上面题目的标准答案和学生的回答,针对这道题给学生辅导.
Assistant:
Setting `pad_token_id` to `eos_token_id`:2 for open-end generation.
after initialization, first token took 0.108
好
的
,让
我
们
来
看
一
下
这
道
题
。
题
目
要
求
我
们
计
算
一个
球
是
红
色
,另
一个
球
是
蓝
色
的
概
率
。这
个
问
题
可
以
通
过
条
件
概
率
公
式
来
解
决
。
我
们
可
以
先
抽
出
红
球
,然
后
再
抽
出
蓝
球
,也
可
以
先
抽
出
蓝
球
,然
后
再
抽
出
红
球
。所
以
,我
们
需
要
把
这
两
种
情
况
的
概
率
加
起
来
。
如
果
我
们
先
抽
出
红
球
,然
后
再
抽
出
蓝
球
,那
么
这
两
次
抽
球
的
概
率
分
别
是
(4/10)
和
(6/9)。这
时
候
,我
们
需
要
将
它
们
相
乘
,得
到
的
结
果
是
(4/10)*(6/9)
=
24/90
=
4/15。
如
果
我
们
先
抽
出
蓝
球
,然
后
再
抽
出
红
球
,那
么
这
两
次
抽
球
的
概
率
分
别
是
(6/10)
和
(4/9)。这
时
候
,我
们
同
样
需
要
将
它
们
相
乘
,得
到
的
结
果
是
(6/10)*(4/9)
=
24/90
=
4/15。
最
后
,我
们
将
这
两
种
情
况
的
概
率
相
加
,得
到
的
结
果
是
(4/15)
+
(4/15)
=
8/15。
所
以
,一个
球
是
红
色
,另
一个
球
是
蓝
色
的
概
率
是
8/15。
Final output:好的,让我们来看一下这道题。
题目要求我们计算一个球是红色,另一个球是蓝色的概率。这个问题可以通过条件概率公式来解决。
我们可以先抽出红球,然后再抽出蓝球,也可以先抽出蓝球,然后再抽出红球。所以,我们需要把这两种情况的概率加起来。
如果我们先抽出红球,然后再抽出蓝球,那么这两次抽球的概率分别是 (4/10) 和 (6/9)。这时候,我们需要将它们相乘,得到的结果是 (4/10)*(6/9) = 24/90 = 4/15。
如果我们先抽出蓝球,然后再抽出红球,那么这两次抽球的概率分别是 (6/10) 和 (4/9)。这时候,我们同样需要将它们相乘,得到的结果是 (6/10)*(4/9) = 24/90 = 4/15。
最后,我们将这两种情况的概率相加,得到的结果是 (4/15) + (4/15) = 8/15。
所以,一个球是红色,另一个球是蓝色的概率是 8/15。
Generated in 11.99962306022644 seconds.
Tokens per second: 31.42
Tokens per second not including time to first token: 31.62
cur memory: 5152501248
max allocated: 5206267904
peak memory: 5364514816