Failed to load versions. Head to the versions page to see all versions for this model.
You're looking at a specific version of this model. Jump to the model overview.
philz1337x /clarity-upscaler:3bb9d341
Input
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"philz1337x/clarity-upscaler:3bb9d3412f14261c2f8cfa15a56dd7b33f44af54777c517b860a3f678a5d7f3b",
{
input: {
seed: 1337,
image: "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
prompt: "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
dynamic: 6,
sd_model: "juggernaut_reborn.safetensors [338b85bc4f]",
scheduler: "DPM++ 3M SDE Karras",
creativity: 0.35,
lora_links: "",
downscaling: false,
resemblance: 0.6,
scale_factor: 2,
tiling_width: 112,
tiling_height: 144,
custom_sd_model: "",
negative_prompt: "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
num_inference_steps: 18,
downscaling_resolution: 768
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"philz1337x/clarity-upscaler:3bb9d3412f14261c2f8cfa15a56dd7b33f44af54777c517b860a3f678a5d7f3b",
input={
"seed": 1337,
"image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"dynamic": 6,
"sd_model": "juggernaut_reborn.safetensors [338b85bc4f]",
"scheduler": "DPM++ 3M SDE Karras",
"creativity": 0.35,
"lora_links": "",
"downscaling": False,
"resemblance": 0.6,
"scale_factor": 2,
"tiling_width": 112,
"tiling_height": 144,
"custom_sd_model": "",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 18,
"downscaling_resolution": 768
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run philz1337x/clarity-upscaler using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "philz1337x/clarity-upscaler:3bb9d3412f14261c2f8cfa15a56dd7b33f44af54777c517b860a3f678a5d7f3b",
"input": {
"seed": 1337,
"image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"dynamic": 6,
"sd_model": "juggernaut_reborn.safetensors [338b85bc4f]",
"scheduler": "DPM++ 3M SDE Karras",
"creativity": 0.35,
"lora_links": "",
"downscaling": false,
"resemblance": 0.6,
"scale_factor": 2,
"tiling_width": 112,
"tiling_height": 144,
"custom_sd_model": "",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 18,
"downscaling_resolution": 768
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
Output
Loading...
{
"completed_at": "2024-04-08T15:34:51.385820Z",
"created_at": "2024-04-08T15:34:38.558000Z",
"data_removed": false,
"error": null,
"id": "snbeynewvsrgp0ceqsc8gjk6sm",
"input": {
"seed": 1337,
"image": "https://replicate.delivery/pbxt/KiDB5iqtTcxiTI17WASotG1Ei0TNJCztdU6J02pnMYAd8B1X/13_before-4.png",
"prompt": "masterpiece, best quality, highres, <lora:more_details:0.5> <lora:SDXLrender_v2.0:1>",
"dynamic": 6,
"sd_model": "juggernaut_reborn.safetensors [338b85bc4f]",
"scheduler": "DPM++ 3M SDE Karras",
"creativity": 0.35,
"lora_links": "",
"downscaling": false,
"resemblance": 0.6,
"scale_factor": 2,
"tiling_width": 112,
"tiling_height": 144,
"custom_sd_model": "",
"negative_prompt": "(worst quality, low quality, normal quality:2) JuggernautNegative-neg",
"num_inference_steps": 18,
"downscaling_resolution": 768
},
"logs": "Running prediction\n[Tiled Diffusion] upscaling image with 4x-UltraSharp...\n[Tiled Diffusion] ControlNet found, support is enabled.\n2024-04-08 15:34:42,215 - ControlNet - \u001b[0;32mINFO\u001b[0m - unit_separate = False, style_align = False\n2024-04-08 15:34:42,215 - ControlNet - \u001b[0;32mINFO\u001b[0m - Loading model from cache: control_v11f1e_sd15_tile\n2024-04-08 15:34:42,234 - ControlNet - \u001b[0;32mINFO\u001b[0m - Using preprocessor: tile_resample\n2024-04-08 15:34:42,234 - ControlNet - \u001b[0;32mINFO\u001b[0m - preprocessor resolution = 1536\n2024-04-08 15:34:42,310 - ControlNet - \u001b[0;32mINFO\u001b[0m - ControlNet Hooked - Time = 0.0993812084197998\nMultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 4, Batch size: 4, Tile batches: 1 (ext: ContrlNet)\n[Tiled VAE]: the input size is tiny and unnecessary to tile.\nMultiDiffusion Sampling: 0%| | 0/10 [00:00<?, ?it/s]\n 0%| | 0/7 [00:00<?, ?it/s]\u001b[A\nTotal progress: 0%| | 0/7 [00:00<?, ?it/s]\u001b[A\n 14%|█▍ | 1/7 [00:00<00:05, 1.10it/s]\u001b[A\nTotal progress: 29%|██▊ | 2/7 [00:00<00:02, 2.22it/s]\u001b[A\n 29%|██▊ | 2/7 [00:01<00:04, 1.11it/s]\u001b[A\nTotal progress: 43%|████▎ | 3/7 [00:01<00:02, 1.57it/s]\u001b[A\n 43%|████▎ | 3/7 [00:02<00:03, 1.11it/s]\u001b[A\nTotal progress: 57%|█████▋ | 4/7 [00:02<00:02, 1.36it/s]\u001b[A\n 57%|█████▋ | 4/7 [00:03<00:02, 1.11it/s]\u001b[A\nTotal progress: 71%|███████▏ | 5/7 [00:03<00:01, 1.26it/s]\u001b[A\n 71%|███████▏ | 5/7 [00:04<00:01, 1.11it/s]\u001b[A\nTotal progress: 86%|████████▌ | 6/7 [00:04<00:00, 1.21it/s]\u001b[A\n 86%|████████▌ | 6/7 [00:05<00:00, 1.11it/s]\u001b[A\n100%|██████████| 7/7 [00:06<00:00, 1.11it/s]\u001b[A\n100%|██████████| 7/7 [00:06<00:00, 1.11it/s]\nTotal progress: 100%|██████████| 7/7 [00:05<00:00, 1.18it/s]\u001b[A[Tiled VAE]: the input size is tiny and unnecessary to tile.\nTotal progress: 100%|██████████| 7/7 [00:06<00:00, 1.18it/s]\u001b[A\nTotal progress: 100%|██████████| 7/7 [00:06<00:00, 1.11it/s]\nPrediction took 11.742665767669678 seconds",
"metrics": {
"predict_time": 12.806754,
"total_time": 12.82782
},
"output": [
"https://replicate.delivery/pbxt/00paK5p2fY36XykEcte0skfqnSl3akRGTm4TC2l2wiU0E4QlA/1337-89fd2a6e-f5bd-11ee-87b9-bec9d6ff70a9.png"
],
"started_at": "2024-04-08T15:34:38.579066Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/snbeynewvsrgp0ceqsc8gjk6sm",
"cancel": "https://api.replicate.com/v1/predictions/snbeynewvsrgp0ceqsc8gjk6sm/cancel"
},
"version": "3bb9d3412f14261c2f8cfa15a56dd7b33f44af54777c517b860a3f678a5d7f3b"
}
Running prediction
[Tiled Diffusion] upscaling image with 4x-UltraSharp...
[Tiled Diffusion] ControlNet found, support is enabled.
2024-04-08 15:34:42,215 - ControlNet - INFO - unit_separate = False, style_align = False
2024-04-08 15:34:42,215 - ControlNet - INFO - Loading model from cache: control_v11f1e_sd15_tile
2024-04-08 15:34:42,234 - ControlNet - INFO - Using preprocessor: tile_resample
2024-04-08 15:34:42,234 - ControlNet - INFO - preprocessor resolution = 1536
2024-04-08 15:34:42,310 - ControlNet - INFO - ControlNet Hooked - Time = 0.0993812084197998
MultiDiffusion hooked into 'DPM++ 3M SDE Karras' sampler, Tile size: 144x112, Tile count: 4, Batch size: 4, Tile batches: 1 (ext: ContrlNet)
[Tiled VAE]: the input size is tiny and unnecessary to tile.
MultiDiffusion Sampling: 0%| | 0/10 [00:00<?, ?it/s]
0%| | 0/7 [00:00<?, ?it/s]
Total progress: 0%| | 0/7 [00:00<?, ?it/s]
14%|█▍ | 1/7 [00:00<00:05, 1.10it/s]
Total progress: 29%|██▊ | 2/7 [00:00<00:02, 2.22it/s]
29%|██▊ | 2/7 [00:01<00:04, 1.11it/s]
Total progress: 43%|████▎ | 3/7 [00:01<00:02, 1.57it/s]
43%|████▎ | 3/7 [00:02<00:03, 1.11it/s]
Total progress: 57%|█████▋ | 4/7 [00:02<00:02, 1.36it/s]
57%|█████▋ | 4/7 [00:03<00:02, 1.11it/s]
Total progress: 71%|███████▏ | 5/7 [00:03<00:01, 1.26it/s]
71%|███████▏ | 5/7 [00:04<00:01, 1.11it/s]
Total progress: 86%|████████▌ | 6/7 [00:04<00:00, 1.21it/s]
86%|████████▌ | 6/7 [00:05<00:00, 1.11it/s]
100%|██████████| 7/7 [00:06<00:00, 1.11it/s]
100%|██████████| 7/7 [00:06<00:00, 1.11it/s]
Total progress: 100%|██████████| 7/7 [00:05<00:00, 1.18it/s][Tiled VAE]: the input size is tiny and unnecessary to tile.
Total progress: 100%|██████████| 7/7 [00:06<00:00, 1.18it/s]
Total progress: 100%|██████████| 7/7 [00:06<00:00, 1.11it/s]
Prediction took 11.742665767669678 seconds