pielgrin
/
sdxl-omaji
- Public
- 115 runs
-
L40S
- SDXL fine-tune
Prediction
pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208IDtvktkj3bq24tyx4mnm7bokfkiiStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- A TOK emoji of Zinedine Zidane
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.7
- num_outputs
- 3
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.8
- prompt_strength
- 0.8
- num_inference_steps
- 100
{ "width": 512, "height": 512, "prompt": "A TOK emoji of Zinedine Zidane", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 3, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 100 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", { input: { width: 512, height: 512, prompt: "A TOK emoji of Zinedine Zidane", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.7, num_outputs: 3, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.8, prompt_strength: 0.8, num_inference_steps: 100 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", input={ "width": 512, "height": 512, "prompt": "A TOK emoji of Zinedine Zidane", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 3, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 100 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", "input": { "width": 512, "height": 512, "prompt": "A TOK emoji of Zinedine Zidane", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 3, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 100 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-11T17:03:44.110915Z", "created_at": "2023-09-11T17:03:23.325258Z", "data_removed": false, "error": null, "id": "tvktkj3bq24tyx4mnm7bokfkii", "input": { "width": 512, "height": 512, "prompt": "A TOK emoji of Zinedine Zidane", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.7, "num_outputs": 3, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.8, "prompt_strength": 0.8, "num_inference_steps": 100 }, "logs": "Using seed: 49875\nPrompt: A <s0><s1> emoji of Zinedine Zidane\ntxt2img mode\n 0%| | 0/80 [00:00<?, ?it/s]\n 1%|▏ | 1/80 [00:00<00:15, 5.01it/s]\n 2%|▎ | 2/80 [00:00<00:15, 4.99it/s]\n 4%|▍ | 3/80 [00:00<00:15, 4.98it/s]\n 5%|▌ | 4/80 [00:00<00:15, 4.98it/s]\n 6%|▋ | 5/80 [00:01<00:15, 4.99it/s]\n 8%|▊ | 6/80 [00:01<00:14, 5.00it/s]\n 9%|▉ | 7/80 [00:01<00:14, 5.00it/s]\n 10%|█ | 8/80 [00:01<00:14, 5.00it/s]\n 11%|█▏ | 9/80 [00:01<00:14, 5.00it/s]\n 12%|█▎ | 10/80 [00:02<00:14, 5.00it/s]\n 14%|█▍ | 11/80 [00:02<00:13, 5.00it/s]\n 15%|█▌ | 12/80 [00:02<00:13, 5.00it/s]\n 16%|█▋ | 13/80 [00:02<00:13, 5.00it/s]\n 18%|█▊ | 14/80 [00:02<00:13, 5.00it/s]\n 19%|█▉ | 15/80 [00:03<00:13, 5.00it/s]\n 20%|██ | 16/80 [00:03<00:12, 5.00it/s]\n 21%|██▏ | 17/80 [00:03<00:12, 5.00it/s]\n 22%|██▎ | 18/80 [00:03<00:12, 5.00it/s]\n 24%|██▍ | 19/80 [00:03<00:12, 5.00it/s]\n 25%|██▌ | 20/80 [00:04<00:12, 5.00it/s]\n 26%|██▋ | 21/80 [00:04<00:11, 4.99it/s]\n 28%|██▊ | 22/80 [00:04<00:11, 4.99it/s]\n 29%|██▉ | 23/80 [00:04<00:11, 5.00it/s]\n 30%|███ | 24/80 [00:04<00:11, 4.99it/s]\n 31%|███▏ | 25/80 [00:05<00:11, 4.99it/s]\n 32%|███▎ | 26/80 [00:05<00:10, 4.99it/s]\n 34%|███▍ | 27/80 [00:05<00:10, 4.99it/s]\n 35%|███▌ | 28/80 [00:05<00:10, 4.99it/s]\n 36%|███▋ | 29/80 [00:05<00:10, 4.99it/s]\n 38%|███▊ | 30/80 [00:06<00:10, 4.98it/s]\n 39%|███▉ | 31/80 [00:06<00:09, 4.99it/s]\n 40%|████ | 32/80 [00:06<00:09, 4.99it/s]\n 41%|████▏ | 33/80 [00:06<00:09, 4.99it/s]\n 42%|████▎ | 34/80 [00:06<00:09, 4.99it/s]\n 44%|████▍ | 35/80 [00:07<00:09, 4.99it/s]\n 45%|████▌ | 36/80 [00:07<00:08, 4.99it/s]\n 46%|████▋ | 37/80 [00:07<00:08, 4.99it/s]\n 48%|████▊ | 38/80 [00:07<00:08, 4.98it/s]\n 49%|████▉ | 39/80 [00:07<00:08, 4.99it/s]\n 50%|█████ | 40/80 [00:08<00:08, 4.98it/s]\n 51%|█████▏ | 41/80 [00:08<00:07, 4.99it/s]\n 52%|█████▎ | 42/80 [00:08<00:07, 4.98it/s]\n 54%|█████▍ | 43/80 [00:08<00:07, 4.98it/s]\n 55%|█████▌ | 44/80 [00:08<00:07, 4.98it/s]\n 56%|█████▋ | 45/80 [00:09<00:07, 4.98it/s]\n 57%|█████▊ | 46/80 [00:09<00:06, 4.98it/s]\n 59%|█████▉ | 47/80 [00:09<00:06, 4.98it/s]\n 60%|██████ | 48/80 [00:09<00:06, 4.97it/s]\n 61%|██████▏ | 49/80 [00:09<00:06, 4.97it/s]\n 62%|██████▎ | 50/80 [00:10<00:06, 4.97it/s]\n 64%|██████▍ | 51/80 [00:10<00:05, 4.97it/s]\n 65%|██████▌ | 52/80 [00:10<00:05, 4.97it/s]\n 66%|██████▋ | 53/80 [00:10<00:05, 4.97it/s]\n 68%|██████▊ | 54/80 [00:10<00:05, 4.98it/s]\n 69%|██████▉ | 55/80 [00:11<00:05, 4.98it/s]\n 70%|███████ | 56/80 [00:11<00:04, 4.98it/s]\n 71%|███████▏ | 57/80 [00:11<00:04, 4.98it/s]\n 72%|███████▎ | 58/80 [00:11<00:04, 4.98it/s]\n 74%|███████▍ | 59/80 [00:11<00:04, 4.97it/s]\n 75%|███████▌ | 60/80 [00:12<00:04, 4.97it/s]\n 76%|███████▋ | 61/80 [00:12<00:03, 4.97it/s]\n 78%|███████▊ | 62/80 [00:12<00:03, 4.97it/s]\n 79%|███████▉ | 63/80 [00:12<00:03, 4.96it/s]\n 80%|████████ | 64/80 [00:12<00:03, 4.97it/s]\n 81%|████████▏ | 65/80 [00:13<00:03, 4.97it/s]\n 82%|████████▎ | 66/80 [00:13<00:02, 4.97it/s]\n 84%|████████▍ | 67/80 [00:13<00:02, 4.97it/s]\n 85%|████████▌ | 68/80 [00:13<00:02, 4.97it/s]\n 86%|████████▋ | 69/80 [00:13<00:02, 4.97it/s]\n 88%|████████▊ | 70/80 [00:14<00:02, 4.97it/s]\n 89%|████████▉ | 71/80 [00:14<00:01, 4.97it/s]\n 90%|█████████ | 72/80 [00:14<00:01, 4.97it/s]\n 91%|█████████▏| 73/80 [00:14<00:01, 4.97it/s]\n 92%|█████████▎| 74/80 [00:14<00:01, 4.97it/s]\n 94%|█████████▍| 75/80 [00:15<00:01, 4.97it/s]\n 95%|█████████▌| 76/80 [00:15<00:00, 4.96it/s]\n 96%|█████████▋| 77/80 [00:15<00:00, 4.96it/s]\n 98%|█████████▊| 78/80 [00:15<00:00, 4.96it/s]\n 99%|█████████▉| 79/80 [00:15<00:00, 4.96it/s]\n100%|██████████| 80/80 [00:16<00:00, 4.96it/s]\n100%|██████████| 80/80 [00:16<00:00, 4.98it/s]\n 0%| | 0/20 [00:00<?, ?it/s]\n 5%|▌ | 1/20 [00:00<00:02, 6.67it/s]\n 10%|█ | 2/20 [00:00<00:02, 6.60it/s]\n 15%|█▌ | 3/20 [00:00<00:02, 6.58it/s]\n 20%|██ | 4/20 [00:00<00:02, 6.57it/s]\n 25%|██▌ | 5/20 [00:00<00:02, 6.56it/s]\n 30%|███ | 6/20 [00:00<00:02, 6.53it/s]\n 35%|███▌ | 7/20 [00:01<00:01, 6.53it/s]\n 40%|████ | 8/20 [00:01<00:01, 6.53it/s]\n 45%|████▌ | 9/20 [00:01<00:01, 6.54it/s]\n 50%|█████ | 10/20 [00:01<00:01, 6.54it/s]\n 55%|█████▌ | 11/20 [00:01<00:01, 6.55it/s]\n 60%|██████ | 12/20 [00:01<00:01, 6.55it/s]\n 65%|██████▌ | 13/20 [00:01<00:01, 6.54it/s]\n 70%|███████ | 14/20 [00:02<00:00, 6.54it/s]\n 75%|███████▌ | 15/20 [00:02<00:00, 6.55it/s]\n 80%|████████ | 16/20 [00:02<00:00, 6.55it/s]\n 85%|████████▌ | 17/20 [00:02<00:00, 6.54it/s]\n 90%|█████████ | 18/20 [00:02<00:00, 6.53it/s]\n 95%|█████████▌| 19/20 [00:02<00:00, 6.53it/s]\n100%|██████████| 20/20 [00:03<00:00, 6.53it/s]\n100%|██████████| 20/20 [00:03<00:00, 6.54it/s]", "metrics": { "predict_time": 20.837011, "total_time": 20.785657 }, "output": [ "https://replicate.delivery/pbxt/a5DYu1I5kWriNFY5X4jDebLHIAeEJy3iWfD0UiHFywe9meZMC/out-0.png", "https://replicate.delivery/pbxt/oO7h3hubWBrfQSdyJBy7SaKOEt2sXFzIRheMQPTVCRfemeZMC/out-1.png", "https://replicate.delivery/pbxt/qneRdac5JkU2DyQNwqxLsSA9leecxCol2TQVgfZZDDY8meZMC/out-2.png" ], "started_at": "2023-09-11T17:03:23.273904Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/tvktkj3bq24tyx4mnm7bokfkii", "cancel": "https://api.replicate.com/v1/predictions/tvktkj3bq24tyx4mnm7bokfkii/cancel" }, "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208" }
Generated inUsing seed: 49875 Prompt: A <s0><s1> emoji of Zinedine Zidane txt2img mode 0%| | 0/80 [00:00<?, ?it/s] 1%|▏ | 1/80 [00:00<00:15, 5.01it/s] 2%|▎ | 2/80 [00:00<00:15, 4.99it/s] 4%|▍ | 3/80 [00:00<00:15, 4.98it/s] 5%|▌ | 4/80 [00:00<00:15, 4.98it/s] 6%|▋ | 5/80 [00:01<00:15, 4.99it/s] 8%|▊ | 6/80 [00:01<00:14, 5.00it/s] 9%|▉ | 7/80 [00:01<00:14, 5.00it/s] 10%|█ | 8/80 [00:01<00:14, 5.00it/s] 11%|█▏ | 9/80 [00:01<00:14, 5.00it/s] 12%|█▎ | 10/80 [00:02<00:14, 5.00it/s] 14%|█▍ | 11/80 [00:02<00:13, 5.00it/s] 15%|█▌ | 12/80 [00:02<00:13, 5.00it/s] 16%|█▋ | 13/80 [00:02<00:13, 5.00it/s] 18%|█▊ | 14/80 [00:02<00:13, 5.00it/s] 19%|█▉ | 15/80 [00:03<00:13, 5.00it/s] 20%|██ | 16/80 [00:03<00:12, 5.00it/s] 21%|██▏ | 17/80 [00:03<00:12, 5.00it/s] 22%|██▎ | 18/80 [00:03<00:12, 5.00it/s] 24%|██▍ | 19/80 [00:03<00:12, 5.00it/s] 25%|██▌ | 20/80 [00:04<00:12, 5.00it/s] 26%|██▋ | 21/80 [00:04<00:11, 4.99it/s] 28%|██▊ | 22/80 [00:04<00:11, 4.99it/s] 29%|██▉ | 23/80 [00:04<00:11, 5.00it/s] 30%|███ | 24/80 [00:04<00:11, 4.99it/s] 31%|███▏ | 25/80 [00:05<00:11, 4.99it/s] 32%|███▎ | 26/80 [00:05<00:10, 4.99it/s] 34%|███▍ | 27/80 [00:05<00:10, 4.99it/s] 35%|███▌ | 28/80 [00:05<00:10, 4.99it/s] 36%|███▋ | 29/80 [00:05<00:10, 4.99it/s] 38%|███▊ | 30/80 [00:06<00:10, 4.98it/s] 39%|███▉ | 31/80 [00:06<00:09, 4.99it/s] 40%|████ | 32/80 [00:06<00:09, 4.99it/s] 41%|████▏ | 33/80 [00:06<00:09, 4.99it/s] 42%|████▎ | 34/80 [00:06<00:09, 4.99it/s] 44%|████▍ | 35/80 [00:07<00:09, 4.99it/s] 45%|████▌ | 36/80 [00:07<00:08, 4.99it/s] 46%|████▋ | 37/80 [00:07<00:08, 4.99it/s] 48%|████▊ | 38/80 [00:07<00:08, 4.98it/s] 49%|████▉ | 39/80 [00:07<00:08, 4.99it/s] 50%|█████ | 40/80 [00:08<00:08, 4.98it/s] 51%|█████▏ | 41/80 [00:08<00:07, 4.99it/s] 52%|█████▎ | 42/80 [00:08<00:07, 4.98it/s] 54%|█████▍ | 43/80 [00:08<00:07, 4.98it/s] 55%|█████▌ | 44/80 [00:08<00:07, 4.98it/s] 56%|█████▋ | 45/80 [00:09<00:07, 4.98it/s] 57%|█████▊ | 46/80 [00:09<00:06, 4.98it/s] 59%|█████▉ | 47/80 [00:09<00:06, 4.98it/s] 60%|██████ | 48/80 [00:09<00:06, 4.97it/s] 61%|██████▏ | 49/80 [00:09<00:06, 4.97it/s] 62%|██████▎ | 50/80 [00:10<00:06, 4.97it/s] 64%|██████▍ | 51/80 [00:10<00:05, 4.97it/s] 65%|██████▌ | 52/80 [00:10<00:05, 4.97it/s] 66%|██████▋ | 53/80 [00:10<00:05, 4.97it/s] 68%|██████▊ | 54/80 [00:10<00:05, 4.98it/s] 69%|██████▉ | 55/80 [00:11<00:05, 4.98it/s] 70%|███████ | 56/80 [00:11<00:04, 4.98it/s] 71%|███████▏ | 57/80 [00:11<00:04, 4.98it/s] 72%|███████▎ | 58/80 [00:11<00:04, 4.98it/s] 74%|███████▍ | 59/80 [00:11<00:04, 4.97it/s] 75%|███████▌ | 60/80 [00:12<00:04, 4.97it/s] 76%|███████▋ | 61/80 [00:12<00:03, 4.97it/s] 78%|███████▊ | 62/80 [00:12<00:03, 4.97it/s] 79%|███████▉ | 63/80 [00:12<00:03, 4.96it/s] 80%|████████ | 64/80 [00:12<00:03, 4.97it/s] 81%|████████▏ | 65/80 [00:13<00:03, 4.97it/s] 82%|████████▎ | 66/80 [00:13<00:02, 4.97it/s] 84%|████████▍ | 67/80 [00:13<00:02, 4.97it/s] 85%|████████▌ | 68/80 [00:13<00:02, 4.97it/s] 86%|████████▋ | 69/80 [00:13<00:02, 4.97it/s] 88%|████████▊ | 70/80 [00:14<00:02, 4.97it/s] 89%|████████▉ | 71/80 [00:14<00:01, 4.97it/s] 90%|█████████ | 72/80 [00:14<00:01, 4.97it/s] 91%|█████████▏| 73/80 [00:14<00:01, 4.97it/s] 92%|█████████▎| 74/80 [00:14<00:01, 4.97it/s] 94%|█████████▍| 75/80 [00:15<00:01, 4.97it/s] 95%|█████████▌| 76/80 [00:15<00:00, 4.96it/s] 96%|█████████▋| 77/80 [00:15<00:00, 4.96it/s] 98%|█████████▊| 78/80 [00:15<00:00, 4.96it/s] 99%|█████████▉| 79/80 [00:15<00:00, 4.96it/s] 100%|██████████| 80/80 [00:16<00:00, 4.96it/s] 100%|██████████| 80/80 [00:16<00:00, 4.98it/s] 0%| | 0/20 [00:00<?, ?it/s] 5%|▌ | 1/20 [00:00<00:02, 6.67it/s] 10%|█ | 2/20 [00:00<00:02, 6.60it/s] 15%|█▌ | 3/20 [00:00<00:02, 6.58it/s] 20%|██ | 4/20 [00:00<00:02, 6.57it/s] 25%|██▌ | 5/20 [00:00<00:02, 6.56it/s] 30%|███ | 6/20 [00:00<00:02, 6.53it/s] 35%|███▌ | 7/20 [00:01<00:01, 6.53it/s] 40%|████ | 8/20 [00:01<00:01, 6.53it/s] 45%|████▌ | 9/20 [00:01<00:01, 6.54it/s] 50%|█████ | 10/20 [00:01<00:01, 6.54it/s] 55%|█████▌ | 11/20 [00:01<00:01, 6.55it/s] 60%|██████ | 12/20 [00:01<00:01, 6.55it/s] 65%|██████▌ | 13/20 [00:01<00:01, 6.54it/s] 70%|███████ | 14/20 [00:02<00:00, 6.54it/s] 75%|███████▌ | 15/20 [00:02<00:00, 6.55it/s] 80%|████████ | 16/20 [00:02<00:00, 6.55it/s] 85%|████████▌ | 17/20 [00:02<00:00, 6.54it/s] 90%|█████████ | 18/20 [00:02<00:00, 6.53it/s] 95%|█████████▌| 19/20 [00:02<00:00, 6.53it/s] 100%|██████████| 20/20 [00:03<00:00, 6.53it/s] 100%|██████████| 20/20 [00:03<00:00, 6.54it/s]
Prediction
pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208IDsz6kds3bupu2g3vpzijaetatbuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- Barack Obama as a TOK emoji
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.75
- num_outputs
- 2
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.99
- prompt_strength
- 0.8
- num_inference_steps
- 140
{ "width": 512, "height": 512, "prompt": "Barack Obama as a TOK emoji", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", { input: { width: 512, height: 512, prompt: "Barack Obama as a TOK emoji", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.75, num_outputs: 2, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.99, prompt_strength: 0.8, num_inference_steps: 140 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", input={ "width": 512, "height": 512, "prompt": "Barack Obama as a TOK emoji", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", "input": { "width": 512, "height": 512, "prompt": "Barack Obama as a TOK emoji", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-11T17:15:18.917336Z", "created_at": "2023-09-11T17:14:58.926241Z", "data_removed": false, "error": null, "id": "sz6kds3bupu2g3vpzijaetatbu", "input": { "width": 512, "height": 512, "prompt": "Barack Obama as a TOK emoji", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 }, "logs": "Using seed: 22449\nPrompt: Barack Obama as a <s0><s1> emoji\ntxt2img mode\n 0%| | 0/138 [00:00<?, ?it/s]\n 1%| | 1/138 [00:00<00:18, 7.50it/s]\n 1%|▏ | 2/138 [00:00<00:18, 7.45it/s]\n 2%|▏ | 3/138 [00:00<00:18, 7.42it/s]\n 3%|▎ | 4/138 [00:00<00:18, 7.43it/s]\n 4%|▎ | 5/138 [00:00<00:17, 7.44it/s]\n 4%|▍ | 6/138 [00:00<00:17, 7.37it/s]\n 5%|▌ | 7/138 [00:00<00:17, 7.35it/s]\n 6%|▌ | 8/138 [00:01<00:17, 7.38it/s]\n 7%|▋ | 9/138 [00:01<00:17, 7.40it/s]\n 7%|▋ | 10/138 [00:01<00:17, 7.40it/s]\n 8%|▊ | 11/138 [00:01<00:17, 7.41it/s]\n 9%|▊ | 12/138 [00:01<00:16, 7.42it/s]\n 9%|▉ | 13/138 [00:01<00:16, 7.43it/s]\n 10%|█ | 14/138 [00:01<00:16, 7.44it/s]\n 11%|█ | 15/138 [00:02<00:16, 7.43it/s]\n 12%|█▏ | 16/138 [00:02<00:16, 7.43it/s]\n 12%|█▏ | 17/138 [00:02<00:16, 7.44it/s]\n 13%|█▎ | 18/138 [00:02<00:16, 7.44it/s]\n 14%|█▍ | 19/138 [00:02<00:15, 7.44it/s]\n 14%|█▍ | 20/138 [00:02<00:15, 7.44it/s]\n 15%|█▌ | 21/138 [00:02<00:15, 7.44it/s]\n 16%|█▌ | 22/138 [00:02<00:15, 7.44it/s]\n 17%|█▋ | 23/138 [00:03<00:15, 7.44it/s]\n 17%|█▋ | 24/138 [00:03<00:15, 7.44it/s]\n 18%|█▊ | 25/138 [00:03<00:15, 7.44it/s]\n 19%|█▉ | 26/138 [00:03<00:15, 7.44it/s]\n 20%|█▉ | 27/138 [00:03<00:14, 7.44it/s]\n 20%|██ | 28/138 [00:03<00:14, 7.44it/s]\n 21%|██ | 29/138 [00:03<00:14, 7.44it/s]\n 22%|██▏ | 30/138 [00:04<00:14, 7.44it/s]\n 22%|██▏ | 31/138 [00:04<00:14, 7.44it/s]\n 23%|██▎ | 32/138 [00:04<00:14, 7.44it/s]\n 24%|██▍ | 33/138 [00:04<00:14, 7.43it/s]\n 25%|██▍ | 34/138 [00:04<00:14, 7.32it/s]\n 25%|██▌ | 35/138 [00:04<00:13, 7.36it/s]\n 26%|██▌ | 36/138 [00:04<00:13, 7.39it/s]\n 27%|██▋ | 37/138 [00:04<00:13, 7.40it/s]\n 28%|██▊ | 38/138 [00:05<00:13, 7.41it/s]\n 28%|██▊ | 39/138 [00:05<00:13, 7.41it/s]\n 29%|██▉ | 40/138 [00:05<00:13, 7.42it/s]\n 30%|██▉ | 41/138 [00:05<00:13, 7.42it/s]\n 30%|███ | 42/138 [00:05<00:12, 7.41it/s]\n 31%|███ | 43/138 [00:05<00:12, 7.42it/s]\n 32%|███▏ | 44/138 [00:05<00:12, 7.42it/s]\n 33%|███▎ | 45/138 [00:06<00:12, 7.41it/s]\n 33%|███▎ | 46/138 [00:06<00:12, 7.41it/s]\n 34%|███▍ | 47/138 [00:06<00:12, 7.41it/s]\n 35%|███▍ | 48/138 [00:06<00:12, 7.41it/s]\n 36%|███▌ | 49/138 [00:06<00:12, 7.41it/s]\n 36%|███▌ | 50/138 [00:06<00:11, 7.40it/s]\n 37%|███▋ | 51/138 [00:06<00:11, 7.41it/s]\n 38%|███▊ | 52/138 [00:07<00:11, 7.41it/s]\n 38%|███▊ | 53/138 [00:07<00:11, 7.41it/s]\n 39%|███▉ | 54/138 [00:07<00:11, 7.41it/s]\n 40%|███▉ | 55/138 [00:07<00:11, 7.41it/s]\n 41%|████ | 56/138 [00:07<00:11, 7.41it/s]\n 41%|████▏ | 57/138 [00:07<00:10, 7.41it/s]\n 42%|████▏ | 58/138 [00:07<00:10, 7.41it/s]\n 43%|████▎ | 59/138 [00:07<00:10, 7.38it/s]\n 43%|████▎ | 60/138 [00:08<00:10, 7.37it/s]\n 44%|████▍ | 61/138 [00:08<00:10, 7.39it/s]\n 45%|████▍ | 62/138 [00:08<00:10, 7.39it/s]\n 46%|████▌ | 63/138 [00:08<00:10, 7.40it/s]\n 46%|████▋ | 64/138 [00:08<00:09, 7.41it/s]\n 47%|████▋ | 65/138 [00:08<00:09, 7.41it/s]\n 48%|████▊ | 66/138 [00:08<00:09, 7.33it/s]\n 49%|████▊ | 67/138 [00:09<00:09, 7.35it/s]\n 49%|████▉ | 68/138 [00:09<00:09, 7.37it/s]\n 50%|█████ | 69/138 [00:09<00:09, 7.39it/s]\n 51%|█████ | 70/138 [00:09<00:09, 7.39it/s]\n 51%|█████▏ | 71/138 [00:09<00:09, 7.40it/s]\n 52%|█████▏ | 72/138 [00:09<00:08, 7.40it/s]\n 53%|█████▎ | 73/138 [00:09<00:08, 7.39it/s]\n 54%|█████▎ | 74/138 [00:09<00:08, 7.35it/s]\n 54%|█████▍ | 75/138 [00:10<00:08, 7.37it/s]\n 55%|█████▌ | 76/138 [00:10<00:08, 7.38it/s]\n 56%|█████▌ | 77/138 [00:10<00:08, 7.39it/s]\n 57%|█████▋ | 78/138 [00:10<00:08, 7.40it/s]\n 57%|█████▋ | 79/138 [00:10<00:07, 7.40it/s]\n 58%|█████▊ | 80/138 [00:10<00:07, 7.39it/s]\n 59%|█████▊ | 81/138 [00:10<00:07, 7.34it/s]\n 59%|█████▉ | 82/138 [00:11<00:07, 7.36it/s]\n 60%|██████ | 83/138 [00:11<00:07, 7.37it/s]\n 61%|██████ | 84/138 [00:11<00:07, 7.38it/s]\n 62%|██████▏ | 85/138 [00:11<00:07, 7.39it/s]\n 62%|██████▏ | 86/138 [00:11<00:07, 7.40it/s]\n 63%|██████▎ | 87/138 [00:11<00:06, 7.36it/s]\n 64%|██████▍ | 88/138 [00:11<00:06, 7.37it/s]\n 64%|██████▍ | 89/138 [00:12<00:06, 7.38it/s]\n 65%|██████▌ | 90/138 [00:12<00:06, 7.38it/s]\n 66%|██████▌ | 91/138 [00:12<00:06, 7.39it/s]\n 67%|██████▋ | 92/138 [00:12<00:06, 7.39it/s]\n 67%|██████▋ | 93/138 [00:12<00:06, 7.39it/s]\n 68%|██████▊ | 94/138 [00:12<00:05, 7.40it/s]\n 69%|██████▉ | 95/138 [00:12<00:05, 7.40it/s]\n 70%|██████▉ | 96/138 [00:12<00:05, 7.40it/s]\n 70%|███████ | 97/138 [00:13<00:05, 7.40it/s]\n 71%|███████ | 98/138 [00:13<00:05, 7.39it/s]\n 72%|███████▏ | 99/138 [00:13<00:05, 7.40it/s]\n 72%|███████▏ | 100/138 [00:13<00:05, 7.40it/s]\n 73%|███████▎ | 101/138 [00:13<00:04, 7.40it/s]\n 74%|███████▍ | 102/138 [00:13<00:04, 7.39it/s]\n 75%|███████▍ | 103/138 [00:13<00:04, 7.40it/s]\n 75%|███████▌ | 104/138 [00:14<00:04, 7.40it/s]\n 76%|███████▌ | 105/138 [00:14<00:04, 7.40it/s]\n 77%|███████▋ | 106/138 [00:14<00:04, 7.40it/s]\n 78%|███████▊ | 107/138 [00:14<00:04, 7.39it/s]\n 78%|███████▊ | 108/138 [00:14<00:04, 7.27it/s]\n 79%|███████▉ | 109/138 [00:14<00:03, 7.31it/s]\n 80%|███████▉ | 110/138 [00:14<00:03, 7.30it/s]\n 80%|████████ | 111/138 [00:15<00:03, 7.33it/s]\n 81%|████████ | 112/138 [00:15<00:03, 7.35it/s]\n 82%|████████▏ | 113/138 [00:15<00:03, 7.37it/s]\n 83%|████████▎ | 114/138 [00:15<00:03, 7.38it/s]\n 83%|████████▎ | 115/138 [00:15<00:03, 7.39it/s]\n 84%|████████▍ | 116/138 [00:15<00:02, 7.39it/s]\n 85%|████████▍ | 117/138 [00:15<00:02, 7.39it/s]\n 86%|████████▌ | 118/138 [00:15<00:02, 7.31it/s]\n 86%|████████▌ | 119/138 [00:16<00:02, 7.34it/s]\n 87%|████████▋ | 120/138 [00:16<00:02, 7.35it/s]\n 88%|████████▊ | 121/138 [00:16<00:02, 7.36it/s]\n 88%|████████▊ | 122/138 [00:16<00:02, 7.36it/s]\n 89%|████████▉ | 123/138 [00:16<00:02, 7.37it/s]\n 90%|████████▉ | 124/138 [00:16<00:01, 7.38it/s]\n 91%|█████████ | 125/138 [00:16<00:01, 7.39it/s]\n 91%|█████████▏| 126/138 [00:17<00:01, 7.38it/s]\n 92%|█████████▏| 127/138 [00:17<00:01, 7.38it/s]\n 93%|█████████▎| 128/138 [00:17<00:01, 7.38it/s]\n 93%|█████████▎| 129/138 [00:17<00:01, 7.38it/s]\n 94%|█████████▍| 130/138 [00:17<00:01, 7.35it/s]\n 95%|█████████▍| 131/138 [00:17<00:00, 7.37it/s]\n 96%|█████████▌| 132/138 [00:17<00:00, 7.37it/s]\n 96%|█████████▋| 133/138 [00:17<00:00, 7.38it/s]\n 97%|█████████▋| 134/138 [00:18<00:00, 7.39it/s]\n 98%|█████████▊| 135/138 [00:18<00:00, 7.38it/s]\n 99%|█████████▊| 136/138 [00:18<00:00, 7.38it/s]\n 99%|█████████▉| 137/138 [00:18<00:00, 7.38it/s]\n100%|██████████| 138/138 [00:18<00:00, 7.39it/s]\n100%|██████████| 138/138 [00:18<00:00, 7.39it/s]\n 0%| | 0/2 [00:00<?, ?it/s]\n 50%|█████ | 1/2 [00:00<00:00, 9.30it/s]\n100%|██████████| 2/2 [00:00<00:00, 9.17it/s]\n100%|██████████| 2/2 [00:00<00:00, 9.19it/s]", "metrics": { "predict_time": 20.022404, "total_time": 19.991095 }, "output": [ "https://replicate.delivery/pbxt/wvsfUogl60UrNixrEj94qhh3jKOGm9oGwNaNJEOv08QT6nxIA/out-0.png", "https://replicate.delivery/pbxt/sDYKhaKeSJW2Iq9XPD3zKzdUnCKyR1qNq1jugYOwTLaT6nxIA/out-1.png" ], "started_at": "2023-09-11T17:14:58.894932Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/sz6kds3bupu2g3vpzijaetatbu", "cancel": "https://api.replicate.com/v1/predictions/sz6kds3bupu2g3vpzijaetatbu/cancel" }, "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208" }
Generated inUsing seed: 22449 Prompt: Barack Obama as a <s0><s1> emoji txt2img mode 0%| | 0/138 [00:00<?, ?it/s] 1%| | 1/138 [00:00<00:18, 7.50it/s] 1%|▏ | 2/138 [00:00<00:18, 7.45it/s] 2%|▏ | 3/138 [00:00<00:18, 7.42it/s] 3%|▎ | 4/138 [00:00<00:18, 7.43it/s] 4%|▎ | 5/138 [00:00<00:17, 7.44it/s] 4%|▍ | 6/138 [00:00<00:17, 7.37it/s] 5%|▌ | 7/138 [00:00<00:17, 7.35it/s] 6%|▌ | 8/138 [00:01<00:17, 7.38it/s] 7%|▋ | 9/138 [00:01<00:17, 7.40it/s] 7%|▋ | 10/138 [00:01<00:17, 7.40it/s] 8%|▊ | 11/138 [00:01<00:17, 7.41it/s] 9%|▊ | 12/138 [00:01<00:16, 7.42it/s] 9%|▉ | 13/138 [00:01<00:16, 7.43it/s] 10%|█ | 14/138 [00:01<00:16, 7.44it/s] 11%|█ | 15/138 [00:02<00:16, 7.43it/s] 12%|█▏ | 16/138 [00:02<00:16, 7.43it/s] 12%|█▏ | 17/138 [00:02<00:16, 7.44it/s] 13%|█▎ | 18/138 [00:02<00:16, 7.44it/s] 14%|█▍ | 19/138 [00:02<00:15, 7.44it/s] 14%|█▍ | 20/138 [00:02<00:15, 7.44it/s] 15%|█▌ | 21/138 [00:02<00:15, 7.44it/s] 16%|█▌ | 22/138 [00:02<00:15, 7.44it/s] 17%|█▋ | 23/138 [00:03<00:15, 7.44it/s] 17%|█▋ | 24/138 [00:03<00:15, 7.44it/s] 18%|█▊ | 25/138 [00:03<00:15, 7.44it/s] 19%|█▉ | 26/138 [00:03<00:15, 7.44it/s] 20%|█▉ | 27/138 [00:03<00:14, 7.44it/s] 20%|██ | 28/138 [00:03<00:14, 7.44it/s] 21%|██ | 29/138 [00:03<00:14, 7.44it/s] 22%|██▏ | 30/138 [00:04<00:14, 7.44it/s] 22%|██▏ | 31/138 [00:04<00:14, 7.44it/s] 23%|██▎ | 32/138 [00:04<00:14, 7.44it/s] 24%|██▍ | 33/138 [00:04<00:14, 7.43it/s] 25%|██▍ | 34/138 [00:04<00:14, 7.32it/s] 25%|██▌ | 35/138 [00:04<00:13, 7.36it/s] 26%|██▌ | 36/138 [00:04<00:13, 7.39it/s] 27%|██▋ | 37/138 [00:04<00:13, 7.40it/s] 28%|██▊ | 38/138 [00:05<00:13, 7.41it/s] 28%|██▊ | 39/138 [00:05<00:13, 7.41it/s] 29%|██▉ | 40/138 [00:05<00:13, 7.42it/s] 30%|██▉ | 41/138 [00:05<00:13, 7.42it/s] 30%|███ | 42/138 [00:05<00:12, 7.41it/s] 31%|███ | 43/138 [00:05<00:12, 7.42it/s] 32%|███▏ | 44/138 [00:05<00:12, 7.42it/s] 33%|███▎ | 45/138 [00:06<00:12, 7.41it/s] 33%|███▎ | 46/138 [00:06<00:12, 7.41it/s] 34%|███▍ | 47/138 [00:06<00:12, 7.41it/s] 35%|███▍ | 48/138 [00:06<00:12, 7.41it/s] 36%|███▌ | 49/138 [00:06<00:12, 7.41it/s] 36%|███▌ | 50/138 [00:06<00:11, 7.40it/s] 37%|███▋ | 51/138 [00:06<00:11, 7.41it/s] 38%|███▊ | 52/138 [00:07<00:11, 7.41it/s] 38%|███▊ | 53/138 [00:07<00:11, 7.41it/s] 39%|███▉ | 54/138 [00:07<00:11, 7.41it/s] 40%|███▉ | 55/138 [00:07<00:11, 7.41it/s] 41%|████ | 56/138 [00:07<00:11, 7.41it/s] 41%|████▏ | 57/138 [00:07<00:10, 7.41it/s] 42%|████▏ | 58/138 [00:07<00:10, 7.41it/s] 43%|████▎ | 59/138 [00:07<00:10, 7.38it/s] 43%|████▎ | 60/138 [00:08<00:10, 7.37it/s] 44%|████▍ | 61/138 [00:08<00:10, 7.39it/s] 45%|████▍ | 62/138 [00:08<00:10, 7.39it/s] 46%|████▌ | 63/138 [00:08<00:10, 7.40it/s] 46%|████▋ | 64/138 [00:08<00:09, 7.41it/s] 47%|████▋ | 65/138 [00:08<00:09, 7.41it/s] 48%|████▊ | 66/138 [00:08<00:09, 7.33it/s] 49%|████▊ | 67/138 [00:09<00:09, 7.35it/s] 49%|████▉ | 68/138 [00:09<00:09, 7.37it/s] 50%|█████ | 69/138 [00:09<00:09, 7.39it/s] 51%|█████ | 70/138 [00:09<00:09, 7.39it/s] 51%|█████▏ | 71/138 [00:09<00:09, 7.40it/s] 52%|█████▏ | 72/138 [00:09<00:08, 7.40it/s] 53%|█████▎ | 73/138 [00:09<00:08, 7.39it/s] 54%|█████▎ | 74/138 [00:09<00:08, 7.35it/s] 54%|█████▍ | 75/138 [00:10<00:08, 7.37it/s] 55%|█████▌ | 76/138 [00:10<00:08, 7.38it/s] 56%|█████▌ | 77/138 [00:10<00:08, 7.39it/s] 57%|█████▋ | 78/138 [00:10<00:08, 7.40it/s] 57%|█████▋ | 79/138 [00:10<00:07, 7.40it/s] 58%|█████▊ | 80/138 [00:10<00:07, 7.39it/s] 59%|█████▊ | 81/138 [00:10<00:07, 7.34it/s] 59%|█████▉ | 82/138 [00:11<00:07, 7.36it/s] 60%|██████ | 83/138 [00:11<00:07, 7.37it/s] 61%|██████ | 84/138 [00:11<00:07, 7.38it/s] 62%|██████▏ | 85/138 [00:11<00:07, 7.39it/s] 62%|██████▏ | 86/138 [00:11<00:07, 7.40it/s] 63%|██████▎ | 87/138 [00:11<00:06, 7.36it/s] 64%|██████▍ | 88/138 [00:11<00:06, 7.37it/s] 64%|██████▍ | 89/138 [00:12<00:06, 7.38it/s] 65%|██████▌ | 90/138 [00:12<00:06, 7.38it/s] 66%|██████▌ | 91/138 [00:12<00:06, 7.39it/s] 67%|██████▋ | 92/138 [00:12<00:06, 7.39it/s] 67%|██████▋ | 93/138 [00:12<00:06, 7.39it/s] 68%|██████▊ | 94/138 [00:12<00:05, 7.40it/s] 69%|██████▉ | 95/138 [00:12<00:05, 7.40it/s] 70%|██████▉ | 96/138 [00:12<00:05, 7.40it/s] 70%|███████ | 97/138 [00:13<00:05, 7.40it/s] 71%|███████ | 98/138 [00:13<00:05, 7.39it/s] 72%|███████▏ | 99/138 [00:13<00:05, 7.40it/s] 72%|███████▏ | 100/138 [00:13<00:05, 7.40it/s] 73%|███████▎ | 101/138 [00:13<00:04, 7.40it/s] 74%|███████▍ | 102/138 [00:13<00:04, 7.39it/s] 75%|███████▍ | 103/138 [00:13<00:04, 7.40it/s] 75%|███████▌ | 104/138 [00:14<00:04, 7.40it/s] 76%|███████▌ | 105/138 [00:14<00:04, 7.40it/s] 77%|███████▋ | 106/138 [00:14<00:04, 7.40it/s] 78%|███████▊ | 107/138 [00:14<00:04, 7.39it/s] 78%|███████▊ | 108/138 [00:14<00:04, 7.27it/s] 79%|███████▉ | 109/138 [00:14<00:03, 7.31it/s] 80%|███████▉ | 110/138 [00:14<00:03, 7.30it/s] 80%|████████ | 111/138 [00:15<00:03, 7.33it/s] 81%|████████ | 112/138 [00:15<00:03, 7.35it/s] 82%|████████▏ | 113/138 [00:15<00:03, 7.37it/s] 83%|████████▎ | 114/138 [00:15<00:03, 7.38it/s] 83%|████████▎ | 115/138 [00:15<00:03, 7.39it/s] 84%|████████▍ | 116/138 [00:15<00:02, 7.39it/s] 85%|████████▍ | 117/138 [00:15<00:02, 7.39it/s] 86%|████████▌ | 118/138 [00:15<00:02, 7.31it/s] 86%|████████▌ | 119/138 [00:16<00:02, 7.34it/s] 87%|████████▋ | 120/138 [00:16<00:02, 7.35it/s] 88%|████████▊ | 121/138 [00:16<00:02, 7.36it/s] 88%|████████▊ | 122/138 [00:16<00:02, 7.36it/s] 89%|████████▉ | 123/138 [00:16<00:02, 7.37it/s] 90%|████████▉ | 124/138 [00:16<00:01, 7.38it/s] 91%|█████████ | 125/138 [00:16<00:01, 7.39it/s] 91%|█████████▏| 126/138 [00:17<00:01, 7.38it/s] 92%|█████████▏| 127/138 [00:17<00:01, 7.38it/s] 93%|█████████▎| 128/138 [00:17<00:01, 7.38it/s] 93%|█████████▎| 129/138 [00:17<00:01, 7.38it/s] 94%|█████████▍| 130/138 [00:17<00:01, 7.35it/s] 95%|█████████▍| 131/138 [00:17<00:00, 7.37it/s] 96%|█████████▌| 132/138 [00:17<00:00, 7.37it/s] 96%|█████████▋| 133/138 [00:17<00:00, 7.38it/s] 97%|█████████▋| 134/138 [00:18<00:00, 7.39it/s] 98%|█████████▊| 135/138 [00:18<00:00, 7.38it/s] 99%|█████████▊| 136/138 [00:18<00:00, 7.38it/s] 99%|█████████▉| 137/138 [00:18<00:00, 7.38it/s] 100%|██████████| 138/138 [00:18<00:00, 7.39it/s] 100%|██████████| 138/138 [00:18<00:00, 7.39it/s] 0%| | 0/2 [00:00<?, ?it/s] 50%|█████ | 1/2 [00:00<00:00, 9.30it/s] 100%|██████████| 2/2 [00:00<00:00, 9.17it/s] 100%|██████████| 2/2 [00:00<00:00, 9.19it/s]
Prediction
pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208IDddarc2db6dzo4txjheghq3aseqStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 512
- height
- 512
- prompt
- Ash of Pokemon as a TOK emoji with a red hat
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.75
- num_outputs
- 2
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.99
- prompt_strength
- 0.8
- num_inference_steps
- 140
{ "width": 512, "height": 512, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", { input: { width: 512, height: 512, prompt: "Ash of Pokemon as a TOK emoji with a red hat", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.75, num_outputs: 2, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.99, prompt_strength: 0.8, num_inference_steps: 140 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", input={ "width": 512, "height": 512, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", "input": { "width": 512, "height": 512, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-11T17:17:51.246414Z", "created_at": "2023-09-11T17:17:31.251541Z", "data_removed": false, "error": null, "id": "ddarc2db6dzo4txjheghq3aseq", "input": { "width": 512, "height": 512, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 }, "logs": "Using seed: 4972\nPrompt: Ash of Pokemon as a <s0><s1> emoji with a red hat\ntxt2img mode\n 0%| | 0/138 [00:00<?, ?it/s]\n 1%| | 1/138 [00:00<00:18, 7.54it/s]\n 1%|▏ | 2/138 [00:00<00:18, 7.39it/s]\n 2%|▏ | 3/138 [00:00<00:18, 7.43it/s]\n 3%|▎ | 4/138 [00:00<00:18, 7.43it/s]\n 4%|▎ | 5/138 [00:00<00:17, 7.43it/s]\n 4%|▍ | 6/138 [00:00<00:17, 7.44it/s]\n 5%|▌ | 7/138 [00:00<00:17, 7.44it/s]\n 6%|▌ | 8/138 [00:01<00:17, 7.44it/s]\n 7%|▋ | 9/138 [00:01<00:17, 7.43it/s]\n 7%|▋ | 10/138 [00:01<00:17, 7.43it/s]\n 8%|▊ | 11/138 [00:01<00:17, 7.44it/s]\n 9%|▊ | 12/138 [00:01<00:16, 7.43it/s]\n 9%|▉ | 13/138 [00:01<00:16, 7.43it/s]\n 10%|█ | 14/138 [00:01<00:16, 7.42it/s]\n 11%|█ | 15/138 [00:02<00:16, 7.41it/s]\n 12%|█▏ | 16/138 [00:02<00:16, 7.41it/s]\n 12%|█▏ | 17/138 [00:02<00:16, 7.41it/s]\n 13%|█▎ | 18/138 [00:02<00:16, 7.41it/s]\n 14%|█▍ | 19/138 [00:02<00:16, 7.41it/s]\n 14%|█▍ | 20/138 [00:02<00:15, 7.41it/s]\n 15%|█▌ | 21/138 [00:02<00:15, 7.40it/s]\n 16%|█▌ | 22/138 [00:02<00:15, 7.41it/s]\n 17%|█▋ | 23/138 [00:03<00:15, 7.41it/s]\n 17%|█▋ | 24/138 [00:03<00:15, 7.41it/s]\n 18%|█▊ | 25/138 [00:03<00:15, 7.41it/s]\n 19%|█▉ | 26/138 [00:03<00:15, 7.41it/s]\n 20%|█▉ | 27/138 [00:03<00:14, 7.41it/s]\n 20%|██ | 28/138 [00:03<00:14, 7.41it/s]\n 21%|██ | 29/138 [00:03<00:14, 7.41it/s]\n 22%|██▏ | 30/138 [00:04<00:14, 7.41it/s]\n 22%|██▏ | 31/138 [00:04<00:14, 7.41it/s]\n 23%|██▎ | 32/138 [00:04<00:14, 7.40it/s]\n 24%|██▍ | 33/138 [00:04<00:14, 7.40it/s]\n 25%|██▍ | 34/138 [00:04<00:14, 7.40it/s]\n 25%|██▌ | 35/138 [00:04<00:13, 7.40it/s]\n 26%|██▌ | 36/138 [00:04<00:13, 7.40it/s]\n 27%|██▋ | 37/138 [00:04<00:13, 7.41it/s]\n 28%|██▊ | 38/138 [00:05<00:13, 7.40it/s]\n 28%|██▊ | 39/138 [00:05<00:13, 7.40it/s]\n 29%|██▉ | 40/138 [00:05<00:13, 7.41it/s]\n 30%|██▉ | 41/138 [00:05<00:13, 7.40it/s]\n 30%|███ | 42/138 [00:05<00:12, 7.40it/s]\n 31%|███ | 43/138 [00:05<00:12, 7.40it/s]\n 32%|███▏ | 44/138 [00:05<00:12, 7.41it/s]\n 33%|███▎ | 45/138 [00:06<00:12, 7.40it/s]\n 33%|███▎ | 46/138 [00:06<00:12, 7.40it/s]\n 34%|███▍ | 47/138 [00:06<00:12, 7.40it/s]\n 35%|███▍ | 48/138 [00:06<00:12, 7.40it/s]\n 36%|███▌ | 49/138 [00:06<00:12, 7.37it/s]\n 36%|███▌ | 50/138 [00:06<00:11, 7.38it/s]\n 37%|███▋ | 51/138 [00:06<00:11, 7.38it/s]\n 38%|███▊ | 52/138 [00:07<00:11, 7.39it/s]\n 38%|███▊ | 53/138 [00:07<00:11, 7.39it/s]\n 39%|███▉ | 54/138 [00:07<00:11, 7.39it/s]\n 40%|███▉ | 55/138 [00:07<00:11, 7.39it/s]\n 41%|████ | 56/138 [00:07<00:11, 7.40it/s]\n 41%|████▏ | 57/138 [00:07<00:10, 7.40it/s]\n 42%|████▏ | 58/138 [00:07<00:10, 7.39it/s]\n 43%|████▎ | 59/138 [00:07<00:10, 7.39it/s]\n 43%|████▎ | 60/138 [00:08<00:10, 7.39it/s]\n 44%|████▍ | 61/138 [00:08<00:10, 7.38it/s]\n 45%|████▍ | 62/138 [00:08<00:10, 7.39it/s]\n 46%|████▌ | 63/138 [00:08<00:10, 7.39it/s]\n 46%|████▋ | 64/138 [00:08<00:10, 7.39it/s]\n 47%|████▋ | 65/138 [00:08<00:09, 7.40it/s]\n 48%|████▊ | 66/138 [00:08<00:09, 7.40it/s]\n 49%|████▊ | 67/138 [00:09<00:09, 7.39it/s]\n 49%|████▉ | 68/138 [00:09<00:09, 7.39it/s]\n 50%|█████ | 69/138 [00:09<00:09, 7.39it/s]\n 51%|█████ | 70/138 [00:09<00:09, 7.39it/s]\n 51%|█████▏ | 71/138 [00:09<00:09, 7.39it/s]\n 52%|█████▏ | 72/138 [00:09<00:08, 7.39it/s]\n 53%|█████▎ | 73/138 [00:09<00:08, 7.39it/s]\n 54%|█████▎ | 74/138 [00:09<00:08, 7.39it/s]\n 54%|█████▍ | 75/138 [00:10<00:08, 7.39it/s]\n 55%|█████▌ | 76/138 [00:10<00:08, 7.40it/s]\n 56%|█████▌ | 77/138 [00:10<00:08, 7.40it/s]\n 57%|█████▋ | 78/138 [00:10<00:08, 7.40it/s]\n 57%|█████▋ | 79/138 [00:10<00:07, 7.39it/s]\n 58%|█████▊ | 80/138 [00:10<00:07, 7.39it/s]\n 59%|█████▊ | 81/138 [00:10<00:07, 7.39it/s]\n 59%|█████▉ | 82/138 [00:11<00:07, 7.39it/s]\n 60%|██████ | 83/138 [00:11<00:07, 7.39it/s]\n 61%|██████ | 84/138 [00:11<00:07, 7.39it/s]\n 62%|██████▏ | 85/138 [00:11<00:07, 7.39it/s]\n 62%|██████▏ | 86/138 [00:11<00:07, 7.39it/s]\n 63%|██████▎ | 87/138 [00:11<00:06, 7.39it/s]\n 64%|██████▍ | 88/138 [00:11<00:06, 7.39it/s]\n 64%|██████▍ | 89/138 [00:12<00:06, 7.23it/s]\n 65%|██████▌ | 90/138 [00:12<00:06, 7.28it/s]\n 66%|██████▌ | 91/138 [00:12<00:06, 7.31it/s]\n 67%|██████▋ | 92/138 [00:12<00:06, 7.33it/s]\n 67%|██████▋ | 93/138 [00:12<00:06, 7.35it/s]\n 68%|██████▊ | 94/138 [00:12<00:05, 7.35it/s]\n 69%|██████▉ | 95/138 [00:12<00:05, 7.36it/s]\n 70%|██████▉ | 96/138 [00:12<00:05, 7.37it/s]\n 70%|███████ | 97/138 [00:13<00:05, 7.38it/s]\n 71%|███████ | 98/138 [00:13<00:05, 7.38it/s]\n 72%|███████▏ | 99/138 [00:13<00:05, 7.38it/s]\n 72%|███████▏ | 100/138 [00:13<00:05, 7.38it/s]\n 73%|███████▎ | 101/138 [00:13<00:05, 7.38it/s]\n 74%|███████▍ | 102/138 [00:13<00:04, 7.38it/s]\n 75%|███████▍ | 103/138 [00:13<00:04, 7.38it/s]\n 75%|███████▌ | 104/138 [00:14<00:04, 7.38it/s]\n 76%|███████▌ | 105/138 [00:14<00:04, 7.38it/s]\n 77%|███████▋ | 106/138 [00:14<00:04, 7.38it/s]\n 78%|███████▊ | 107/138 [00:14<00:04, 7.38it/s]\n 78%|███████▊ | 108/138 [00:14<00:04, 7.38it/s]\n 79%|███████▉ | 109/138 [00:14<00:03, 7.38it/s]\n 80%|███████▉ | 110/138 [00:14<00:03, 7.39it/s]\n 80%|████████ | 111/138 [00:15<00:03, 7.39it/s]\n 81%|████████ | 112/138 [00:15<00:03, 7.38it/s]\n 82%|████████▏ | 113/138 [00:15<00:03, 7.38it/s]\n 83%|████████▎ | 114/138 [00:15<00:03, 7.38it/s]\n 83%|████████▎ | 115/138 [00:15<00:03, 7.38it/s]\n 84%|████████▍ | 116/138 [00:15<00:02, 7.38it/s]\n 85%|████████▍ | 117/138 [00:15<00:02, 7.38it/s]\n 86%|████████▌ | 118/138 [00:15<00:02, 7.38it/s]\n 86%|████████▌ | 119/138 [00:16<00:02, 7.38it/s]\n 87%|████████▋ | 120/138 [00:16<00:02, 7.38it/s]\n 88%|████████▊ | 121/138 [00:16<00:02, 7.38it/s]\n 88%|████████▊ | 122/138 [00:16<00:02, 7.38it/s]\n 89%|████████▉ | 123/138 [00:16<00:02, 7.38it/s]\n 90%|████████▉ | 124/138 [00:16<00:01, 7.38it/s]\n 91%|█████████ | 125/138 [00:16<00:01, 7.38it/s]\n 91%|█████████▏| 126/138 [00:17<00:01, 7.38it/s]\n 92%|█████████▏| 127/138 [00:17<00:01, 7.38it/s]\n 93%|█████████▎| 128/138 [00:17<00:01, 7.38it/s]\n 93%|█████████▎| 129/138 [00:17<00:01, 7.38it/s]\n 94%|█████████▍| 130/138 [00:17<00:01, 7.38it/s]\n 95%|█████████▍| 131/138 [00:17<00:00, 7.37it/s]\n 96%|█████████▌| 132/138 [00:17<00:00, 7.37it/s]\n 96%|█████████▋| 133/138 [00:17<00:00, 7.38it/s]\n 97%|█████████▋| 134/138 [00:18<00:00, 7.38it/s]\n 98%|█████████▊| 135/138 [00:18<00:00, 7.38it/s]\n 99%|█████████▊| 136/138 [00:18<00:00, 7.38it/s]\n 99%|█████████▉| 137/138 [00:18<00:00, 7.37it/s]\n100%|██████████| 138/138 [00:18<00:00, 7.37it/s]\n100%|██████████| 138/138 [00:18<00:00, 7.39it/s]\n 0%| | 0/2 [00:00<?, ?it/s]\n 50%|█████ | 1/2 [00:00<00:00, 9.33it/s]\n100%|██████████| 2/2 [00:00<00:00, 9.19it/s]\n100%|██████████| 2/2 [00:00<00:00, 9.20it/s]", "metrics": { "predict_time": 20.067169, "total_time": 19.994873 }, "output": [ "https://replicate.delivery/pbxt/2UUvtZkYFXpVNhaVqFfZbJnyvtq6uuGJwvo5aD6zDqXf2PjRA/out-0.png", "https://replicate.delivery/pbxt/Pje05uYTzGXFX6Eg9GVYLN4uX8GOtywI5eZvgkAxjKoftfMGB/out-1.png" ], "started_at": "2023-09-11T17:17:31.179245Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/ddarc2db6dzo4txjheghq3aseq", "cancel": "https://api.replicate.com/v1/predictions/ddarc2db6dzo4txjheghq3aseq/cancel" }, "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208" }
Generated inUsing seed: 4972 Prompt: Ash of Pokemon as a <s0><s1> emoji with a red hat txt2img mode 0%| | 0/138 [00:00<?, ?it/s] 1%| | 1/138 [00:00<00:18, 7.54it/s] 1%|▏ | 2/138 [00:00<00:18, 7.39it/s] 2%|▏ | 3/138 [00:00<00:18, 7.43it/s] 3%|▎ | 4/138 [00:00<00:18, 7.43it/s] 4%|▎ | 5/138 [00:00<00:17, 7.43it/s] 4%|▍ | 6/138 [00:00<00:17, 7.44it/s] 5%|▌ | 7/138 [00:00<00:17, 7.44it/s] 6%|▌ | 8/138 [00:01<00:17, 7.44it/s] 7%|▋ | 9/138 [00:01<00:17, 7.43it/s] 7%|▋ | 10/138 [00:01<00:17, 7.43it/s] 8%|▊ | 11/138 [00:01<00:17, 7.44it/s] 9%|▊ | 12/138 [00:01<00:16, 7.43it/s] 9%|▉ | 13/138 [00:01<00:16, 7.43it/s] 10%|█ | 14/138 [00:01<00:16, 7.42it/s] 11%|█ | 15/138 [00:02<00:16, 7.41it/s] 12%|█▏ | 16/138 [00:02<00:16, 7.41it/s] 12%|█▏ | 17/138 [00:02<00:16, 7.41it/s] 13%|█▎ | 18/138 [00:02<00:16, 7.41it/s] 14%|█▍ | 19/138 [00:02<00:16, 7.41it/s] 14%|█▍ | 20/138 [00:02<00:15, 7.41it/s] 15%|█▌ | 21/138 [00:02<00:15, 7.40it/s] 16%|█▌ | 22/138 [00:02<00:15, 7.41it/s] 17%|█▋ | 23/138 [00:03<00:15, 7.41it/s] 17%|█▋ | 24/138 [00:03<00:15, 7.41it/s] 18%|█▊ | 25/138 [00:03<00:15, 7.41it/s] 19%|█▉ | 26/138 [00:03<00:15, 7.41it/s] 20%|█▉ | 27/138 [00:03<00:14, 7.41it/s] 20%|██ | 28/138 [00:03<00:14, 7.41it/s] 21%|██ | 29/138 [00:03<00:14, 7.41it/s] 22%|██▏ | 30/138 [00:04<00:14, 7.41it/s] 22%|██▏ | 31/138 [00:04<00:14, 7.41it/s] 23%|██▎ | 32/138 [00:04<00:14, 7.40it/s] 24%|██▍ | 33/138 [00:04<00:14, 7.40it/s] 25%|██▍ | 34/138 [00:04<00:14, 7.40it/s] 25%|██▌ | 35/138 [00:04<00:13, 7.40it/s] 26%|██▌ | 36/138 [00:04<00:13, 7.40it/s] 27%|██▋ | 37/138 [00:04<00:13, 7.41it/s] 28%|██▊ | 38/138 [00:05<00:13, 7.40it/s] 28%|██▊ | 39/138 [00:05<00:13, 7.40it/s] 29%|██▉ | 40/138 [00:05<00:13, 7.41it/s] 30%|██▉ | 41/138 [00:05<00:13, 7.40it/s] 30%|███ | 42/138 [00:05<00:12, 7.40it/s] 31%|███ | 43/138 [00:05<00:12, 7.40it/s] 32%|███▏ | 44/138 [00:05<00:12, 7.41it/s] 33%|███▎ | 45/138 [00:06<00:12, 7.40it/s] 33%|███▎ | 46/138 [00:06<00:12, 7.40it/s] 34%|███▍ | 47/138 [00:06<00:12, 7.40it/s] 35%|███▍ | 48/138 [00:06<00:12, 7.40it/s] 36%|███▌ | 49/138 [00:06<00:12, 7.37it/s] 36%|███▌ | 50/138 [00:06<00:11, 7.38it/s] 37%|███▋ | 51/138 [00:06<00:11, 7.38it/s] 38%|███▊ | 52/138 [00:07<00:11, 7.39it/s] 38%|███▊ | 53/138 [00:07<00:11, 7.39it/s] 39%|███▉ | 54/138 [00:07<00:11, 7.39it/s] 40%|███▉ | 55/138 [00:07<00:11, 7.39it/s] 41%|████ | 56/138 [00:07<00:11, 7.40it/s] 41%|████▏ | 57/138 [00:07<00:10, 7.40it/s] 42%|████▏ | 58/138 [00:07<00:10, 7.39it/s] 43%|████▎ | 59/138 [00:07<00:10, 7.39it/s] 43%|████▎ | 60/138 [00:08<00:10, 7.39it/s] 44%|████▍ | 61/138 [00:08<00:10, 7.38it/s] 45%|████▍ | 62/138 [00:08<00:10, 7.39it/s] 46%|████▌ | 63/138 [00:08<00:10, 7.39it/s] 46%|████▋ | 64/138 [00:08<00:10, 7.39it/s] 47%|████▋ | 65/138 [00:08<00:09, 7.40it/s] 48%|████▊ | 66/138 [00:08<00:09, 7.40it/s] 49%|████▊ | 67/138 [00:09<00:09, 7.39it/s] 49%|████▉ | 68/138 [00:09<00:09, 7.39it/s] 50%|█████ | 69/138 [00:09<00:09, 7.39it/s] 51%|█████ | 70/138 [00:09<00:09, 7.39it/s] 51%|█████▏ | 71/138 [00:09<00:09, 7.39it/s] 52%|█████▏ | 72/138 [00:09<00:08, 7.39it/s] 53%|█████▎ | 73/138 [00:09<00:08, 7.39it/s] 54%|█████▎ | 74/138 [00:09<00:08, 7.39it/s] 54%|█████▍ | 75/138 [00:10<00:08, 7.39it/s] 55%|█████▌ | 76/138 [00:10<00:08, 7.40it/s] 56%|█████▌ | 77/138 [00:10<00:08, 7.40it/s] 57%|█████▋ | 78/138 [00:10<00:08, 7.40it/s] 57%|█████▋ | 79/138 [00:10<00:07, 7.39it/s] 58%|█████▊ | 80/138 [00:10<00:07, 7.39it/s] 59%|█████▊ | 81/138 [00:10<00:07, 7.39it/s] 59%|█████▉ | 82/138 [00:11<00:07, 7.39it/s] 60%|██████ | 83/138 [00:11<00:07, 7.39it/s] 61%|██████ | 84/138 [00:11<00:07, 7.39it/s] 62%|██████▏ | 85/138 [00:11<00:07, 7.39it/s] 62%|██████▏ | 86/138 [00:11<00:07, 7.39it/s] 63%|██████▎ | 87/138 [00:11<00:06, 7.39it/s] 64%|██████▍ | 88/138 [00:11<00:06, 7.39it/s] 64%|██████▍ | 89/138 [00:12<00:06, 7.23it/s] 65%|██████▌ | 90/138 [00:12<00:06, 7.28it/s] 66%|██████▌ | 91/138 [00:12<00:06, 7.31it/s] 67%|██████▋ | 92/138 [00:12<00:06, 7.33it/s] 67%|██████▋ | 93/138 [00:12<00:06, 7.35it/s] 68%|██████▊ | 94/138 [00:12<00:05, 7.35it/s] 69%|██████▉ | 95/138 [00:12<00:05, 7.36it/s] 70%|██████▉ | 96/138 [00:12<00:05, 7.37it/s] 70%|███████ | 97/138 [00:13<00:05, 7.38it/s] 71%|███████ | 98/138 [00:13<00:05, 7.38it/s] 72%|███████▏ | 99/138 [00:13<00:05, 7.38it/s] 72%|███████▏ | 100/138 [00:13<00:05, 7.38it/s] 73%|███████▎ | 101/138 [00:13<00:05, 7.38it/s] 74%|███████▍ | 102/138 [00:13<00:04, 7.38it/s] 75%|███████▍ | 103/138 [00:13<00:04, 7.38it/s] 75%|███████▌ | 104/138 [00:14<00:04, 7.38it/s] 76%|███████▌ | 105/138 [00:14<00:04, 7.38it/s] 77%|███████▋ | 106/138 [00:14<00:04, 7.38it/s] 78%|███████▊ | 107/138 [00:14<00:04, 7.38it/s] 78%|███████▊ | 108/138 [00:14<00:04, 7.38it/s] 79%|███████▉ | 109/138 [00:14<00:03, 7.38it/s] 80%|███████▉ | 110/138 [00:14<00:03, 7.39it/s] 80%|████████ | 111/138 [00:15<00:03, 7.39it/s] 81%|████████ | 112/138 [00:15<00:03, 7.38it/s] 82%|████████▏ | 113/138 [00:15<00:03, 7.38it/s] 83%|████████▎ | 114/138 [00:15<00:03, 7.38it/s] 83%|████████▎ | 115/138 [00:15<00:03, 7.38it/s] 84%|████████▍ | 116/138 [00:15<00:02, 7.38it/s] 85%|████████▍ | 117/138 [00:15<00:02, 7.38it/s] 86%|████████▌ | 118/138 [00:15<00:02, 7.38it/s] 86%|████████▌ | 119/138 [00:16<00:02, 7.38it/s] 87%|████████▋ | 120/138 [00:16<00:02, 7.38it/s] 88%|████████▊ | 121/138 [00:16<00:02, 7.38it/s] 88%|████████▊ | 122/138 [00:16<00:02, 7.38it/s] 89%|████████▉ | 123/138 [00:16<00:02, 7.38it/s] 90%|████████▉ | 124/138 [00:16<00:01, 7.38it/s] 91%|█████████ | 125/138 [00:16<00:01, 7.38it/s] 91%|█████████▏| 126/138 [00:17<00:01, 7.38it/s] 92%|█████████▏| 127/138 [00:17<00:01, 7.38it/s] 93%|█████████▎| 128/138 [00:17<00:01, 7.38it/s] 93%|█████████▎| 129/138 [00:17<00:01, 7.38it/s] 94%|█████████▍| 130/138 [00:17<00:01, 7.38it/s] 95%|█████████▍| 131/138 [00:17<00:00, 7.37it/s] 96%|█████████▌| 132/138 [00:17<00:00, 7.37it/s] 96%|█████████▋| 133/138 [00:17<00:00, 7.38it/s] 97%|█████████▋| 134/138 [00:18<00:00, 7.38it/s] 98%|█████████▊| 135/138 [00:18<00:00, 7.38it/s] 99%|█████████▊| 136/138 [00:18<00:00, 7.38it/s] 99%|█████████▉| 137/138 [00:18<00:00, 7.37it/s] 100%|██████████| 138/138 [00:18<00:00, 7.37it/s] 100%|██████████| 138/138 [00:18<00:00, 7.39it/s] 0%| | 0/2 [00:00<?, ?it/s] 50%|█████ | 1/2 [00:00<00:00, 9.33it/s] 100%|██████████| 2/2 [00:00<00:00, 9.19it/s] 100%|██████████| 2/2 [00:00<00:00, 9.20it/s]
Prediction
pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208IDc6nrjhdbdlz7znfo5nalnboixuStatusSucceededSourceWebHardwareA40 (Large)Total durationCreatedInput
- width
- 1024
- height
- 1024
- prompt
- Ash of Pokemon as a TOK emoji with a red hat
- refine
- expert_ensemble_refiner
- scheduler
- K_EULER
- lora_scale
- 0.75
- num_outputs
- 2
- guidance_scale
- 7.5
- apply_watermark
- high_noise_frac
- 0.99
- prompt_strength
- 0.8
- num_inference_steps
- 140
{ "width": 1024, "height": 1024, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", { input: { width: 1024, height: 1024, prompt: "Ash of Pokemon as a TOK emoji with a red hat", refine: "expert_ensemble_refiner", scheduler: "K_EULER", lora_scale: 0.75, num_outputs: 2, guidance_scale: 7.5, apply_watermark: true, high_noise_frac: 0.99, prompt_strength: 0.8, num_inference_steps: 140 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "pielgrin/sdxl-omaji:493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", input={ "width": 1024, "height": 1024, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": True, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run pielgrin/sdxl-omaji using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208", "input": { "width": 1024, "height": 1024, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2023-09-11T17:19:37.336402Z", "created_at": "2023-09-11T17:18:19.896975Z", "data_removed": false, "error": null, "id": "c6nrjhdbdlz7znfo5nalnboixu", "input": { "width": 1024, "height": 1024, "prompt": "Ash of Pokemon as a TOK emoji with a red hat", "refine": "expert_ensemble_refiner", "scheduler": "K_EULER", "lora_scale": 0.75, "num_outputs": 2, "guidance_scale": 7.5, "apply_watermark": true, "high_noise_frac": 0.99, "prompt_strength": 0.8, "num_inference_steps": 140 }, "logs": "Using seed: 304\nPrompt: Ash of Pokemon as a <s0><s1> emoji with a red hat\ntxt2img mode\n 0%| | 0/138 [00:00<?, ?it/s]\n 1%| | 1/138 [00:00<01:13, 1.86it/s]\n 1%|▏ | 2/138 [00:01<01:12, 1.87it/s]\n 2%|▏ | 3/138 [00:01<01:12, 1.87it/s]\n 3%|▎ | 4/138 [00:02<01:11, 1.87it/s]\n 4%|▎ | 5/138 [00:02<01:10, 1.88it/s]\n 4%|▍ | 6/138 [00:03<01:10, 1.87it/s]\n 5%|▌ | 7/138 [00:03<01:09, 1.88it/s]\n 6%|▌ | 8/138 [00:04<01:09, 1.87it/s]\n 7%|▋ | 9/138 [00:04<01:08, 1.88it/s]\n 7%|▋ | 10/138 [00:05<01:08, 1.88it/s]\n 8%|▊ | 11/138 [00:05<01:07, 1.88it/s]\n 9%|▊ | 12/138 [00:06<01:07, 1.87it/s]\n 9%|▉ | 13/138 [00:06<01:06, 1.87it/s]\n 10%|█ | 14/138 [00:07<01:06, 1.87it/s]\n 11%|█ | 15/138 [00:08<01:05, 1.87it/s]\n 12%|█▏ | 16/138 [00:08<01:05, 1.87it/s]\n 12%|█▏ | 17/138 [00:09<01:04, 1.87it/s]\n 13%|█▎ | 18/138 [00:09<01:04, 1.87it/s]\n 14%|█▍ | 19/138 [00:10<01:03, 1.87it/s]\n 14%|█▍ | 20/138 [00:10<01:03, 1.87it/s]\n 15%|█▌ | 21/138 [00:11<01:02, 1.87it/s]\n 16%|█▌ | 22/138 [00:11<01:02, 1.87it/s]\n 17%|█▋ | 23/138 [00:12<01:01, 1.87it/s]\n 17%|█▋ | 24/138 [00:12<01:01, 1.87it/s]\n 18%|█▊ | 25/138 [00:13<01:00, 1.87it/s]\n 19%|█▉ | 26/138 [00:13<00:59, 1.87it/s]\n 20%|█▉ | 27/138 [00:14<00:59, 1.87it/s]\n 20%|██ | 28/138 [00:14<00:58, 1.87it/s]\n 21%|██ | 29/138 [00:15<00:58, 1.87it/s]\n 22%|██▏ | 30/138 [00:16<00:57, 1.87it/s]\n 22%|██▏ | 31/138 [00:16<00:57, 1.87it/s]\n 23%|██▎ | 32/138 [00:17<00:56, 1.87it/s]\n 24%|██▍ | 33/138 [00:17<00:56, 1.87it/s]\n 25%|██▍ | 34/138 [00:18<00:55, 1.87it/s]\n 25%|██▌ | 35/138 [00:18<00:55, 1.86it/s]\n 26%|██▌ | 36/138 [00:19<00:54, 1.87it/s]\n 27%|██▋ | 37/138 [00:19<00:54, 1.87it/s]\n 28%|██▊ | 38/138 [00:20<00:53, 1.87it/s]\n 28%|██▊ | 39/138 [00:20<00:53, 1.87it/s]\n 29%|██▉ | 40/138 [00:21<00:52, 1.86it/s]\n 30%|██▉ | 41/138 [00:21<00:52, 1.86it/s]\n 30%|███ | 42/138 [00:22<00:51, 1.86it/s]\n 31%|███ | 43/138 [00:23<00:50, 1.87it/s]\n 32%|███▏ | 44/138 [00:23<00:50, 1.87it/s]\n 33%|███▎ | 45/138 [00:24<00:49, 1.87it/s]\n 33%|███▎ | 46/138 [00:24<00:49, 1.86it/s]\n 34%|███▍ | 47/138 [00:25<00:48, 1.86it/s]\n 35%|███▍ | 48/138 [00:25<00:48, 1.86it/s]\n 36%|███▌ | 49/138 [00:26<00:47, 1.86it/s]\n 36%|███▌ | 50/138 [00:26<00:47, 1.86it/s]\n 37%|███▋ | 51/138 [00:27<00:46, 1.86it/s]\n 38%|███▊ | 52/138 [00:27<00:46, 1.86it/s]\n 38%|███▊ | 53/138 [00:28<00:45, 1.86it/s]\n 39%|███▉ | 54/138 [00:28<00:45, 1.86it/s]\n 40%|███▉ | 55/138 [00:29<00:44, 1.86it/s]\n 41%|████ | 56/138 [00:29<00:44, 1.86it/s]\n 41%|████▏ | 57/138 [00:30<00:43, 1.86it/s]\n 42%|████▏ | 58/138 [00:31<00:42, 1.86it/s]\n 43%|████▎ | 59/138 [00:31<00:42, 1.86it/s]\n 43%|████▎ | 60/138 [00:32<00:41, 1.86it/s]\n 44%|████▍ | 61/138 [00:32<00:41, 1.86it/s]\n 45%|████▍ | 62/138 [00:33<00:40, 1.86it/s]\n 46%|████▌ | 63/138 [00:33<00:40, 1.86it/s]\n 46%|████▋ | 64/138 [00:34<00:39, 1.86it/s]\n 47%|████▋ | 65/138 [00:34<00:39, 1.86it/s]\n 48%|████▊ | 66/138 [00:35<00:38, 1.86it/s]\n 49%|████▊ | 67/138 [00:35<00:38, 1.86it/s]\n 49%|████▉ | 68/138 [00:36<00:37, 1.86it/s]\n 50%|█████ | 69/138 [00:36<00:37, 1.86it/s]\n 51%|█████ | 70/138 [00:37<00:36, 1.86it/s]\n 51%|█████▏ | 71/138 [00:38<00:35, 1.86it/s]\n 52%|█████▏ | 72/138 [00:38<00:35, 1.86it/s]\n 53%|█████▎ | 73/138 [00:39<00:34, 1.86it/s]\n 54%|█████▎ | 74/138 [00:39<00:34, 1.86it/s]\n 54%|█████▍ | 75/138 [00:40<00:34, 1.85it/s]\n 55%|█████▌ | 76/138 [00:40<00:33, 1.86it/s]\n 56%|█████▌ | 77/138 [00:41<00:32, 1.86it/s]\n 57%|█████▋ | 78/138 [00:41<00:32, 1.86it/s]\n 57%|█████▋ | 79/138 [00:42<00:31, 1.86it/s]\n 58%|█████▊ | 80/138 [00:42<00:31, 1.86it/s]\n 59%|█████▊ | 81/138 [00:43<00:30, 1.86it/s]\n 59%|█████▉ | 82/138 [00:43<00:30, 1.86it/s]\n 60%|██████ | 83/138 [00:44<00:29, 1.86it/s]\n 61%|██████ | 84/138 [00:45<00:29, 1.86it/s]\n 62%|██████▏ | 85/138 [00:45<00:28, 1.86it/s]\n 62%|██████▏ | 86/138 [00:46<00:27, 1.86it/s]\n 63%|██████▎ | 87/138 [00:46<00:27, 1.86it/s]\n 64%|██████▍ | 88/138 [00:47<00:26, 1.86it/s]\n 64%|██████▍ | 89/138 [00:47<00:26, 1.86it/s]\n 65%|██████▌ | 90/138 [00:48<00:25, 1.86it/s]\n 66%|██████▌ | 91/138 [00:48<00:25, 1.86it/s]\n 67%|██████▋ | 92/138 [00:49<00:24, 1.86it/s]\n 67%|██████▋ | 93/138 [00:49<00:24, 1.86it/s]\n 68%|██████▊ | 94/138 [00:50<00:23, 1.86it/s]\n 69%|██████▉ | 95/138 [00:50<00:23, 1.86it/s]\n 70%|██████▉ | 96/138 [00:51<00:22, 1.86it/s]\n 70%|███████ | 97/138 [00:52<00:22, 1.86it/s]\n 71%|███████ | 98/138 [00:52<00:21, 1.86it/s]\n 72%|███████▏ | 99/138 [00:53<00:20, 1.86it/s]\n 72%|███████▏ | 100/138 [00:53<00:20, 1.86it/s]\n 73%|███████▎ | 101/138 [00:54<00:19, 1.86it/s]\n 74%|███████▍ | 102/138 [00:54<00:19, 1.86it/s]\n 75%|███████▍ | 103/138 [00:55<00:18, 1.86it/s]\n 75%|███████▌ | 104/138 [00:55<00:18, 1.86it/s]\n 76%|███████▌ | 105/138 [00:56<00:17, 1.86it/s]\n 77%|███████▋ | 106/138 [00:56<00:17, 1.86it/s]\n 78%|███████▊ | 107/138 [00:57<00:16, 1.86it/s]\n 78%|███████▊ | 108/138 [00:57<00:16, 1.86it/s]\n 79%|███████▉ | 109/138 [00:58<00:15, 1.86it/s]\n 80%|███████▉ | 110/138 [00:59<00:15, 1.86it/s]\n 80%|████████ | 111/138 [00:59<00:14, 1.86it/s]\n 81%|████████ | 112/138 [01:00<00:14, 1.86it/s]\n 82%|████████▏ | 113/138 [01:00<00:13, 1.86it/s]\n 83%|████████▎ | 114/138 [01:01<00:12, 1.86it/s]\n 83%|████████▎ | 115/138 [01:01<00:12, 1.86it/s]\n 84%|████████▍ | 116/138 [01:02<00:11, 1.86it/s]\n 85%|████████▍ | 117/138 [01:02<00:11, 1.86it/s]\n 86%|████████▌ | 118/138 [01:03<00:10, 1.86it/s]\n 86%|████████▌ | 119/138 [01:03<00:10, 1.86it/s]\n 87%|████████▋ | 120/138 [01:04<00:09, 1.86it/s]\n 88%|████████▊ | 121/138 [01:04<00:09, 1.86it/s]\n 88%|████████▊ | 122/138 [01:05<00:08, 1.86it/s]\n 89%|████████▉ | 123/138 [01:06<00:08, 1.86it/s]\n 90%|████████▉ | 124/138 [01:06<00:07, 1.86it/s]\n 91%|█████████ | 125/138 [01:07<00:06, 1.86it/s]\n 91%|█████████▏| 126/138 [01:07<00:06, 1.86it/s]\n 92%|█████████▏| 127/138 [01:08<00:05, 1.86it/s]\n 93%|█████████▎| 128/138 [01:08<00:05, 1.86it/s]\n 93%|█████████▎| 129/138 [01:09<00:04, 1.86it/s]\n 94%|█████████▍| 130/138 [01:09<00:04, 1.86it/s]\n 95%|█████████▍| 131/138 [01:10<00:03, 1.86it/s]\n 96%|█████████▌| 132/138 [01:10<00:03, 1.86it/s]\n 96%|█████████▋| 133/138 [01:11<00:02, 1.86it/s]\n 97%|█████████▋| 134/138 [01:11<00:02, 1.85it/s]\n 98%|█████████▊| 135/138 [01:12<00:01, 1.85it/s]\n 99%|█████████▊| 136/138 [01:13<00:01, 1.85it/s]\n 99%|█████████▉| 137/138 [01:13<00:00, 1.85it/s]\n100%|██████████| 138/138 [01:14<00:00, 1.85it/s]\n100%|██████████| 138/138 [01:14<00:00, 1.86it/s]\n 0%| | 0/2 [00:00<?, ?it/s]\n 50%|█████ | 1/2 [00:00<00:00, 2.22it/s]\n100%|██████████| 2/2 [00:00<00:00, 2.22it/s]\n100%|██████████| 2/2 [00:00<00:00, 2.22it/s]", "metrics": { "predict_time": 77.463697, "total_time": 77.439427 }, "output": [ "https://replicate.delivery/pbxt/Ql4btnk5627rNdmsB06DXe4UpAZjZzYSJBVSJQTsnUKU8nxIA/out-0.png", "https://replicate.delivery/pbxt/iAfpmtNifFoDjktfgdtsU5tRKhHBy5W0qzLHkUeXzm1lifZMC/out-1.png" ], "started_at": "2023-09-11T17:18:19.872705Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/c6nrjhdbdlz7znfo5nalnboixu", "cancel": "https://api.replicate.com/v1/predictions/c6nrjhdbdlz7znfo5nalnboixu/cancel" }, "version": "493e4043174477030538f267688eaa54594935d78917e6c5b96309dd2d0b0208" }
Generated inUsing seed: 304 Prompt: Ash of Pokemon as a <s0><s1> emoji with a red hat txt2img mode 0%| | 0/138 [00:00<?, ?it/s] 1%| | 1/138 [00:00<01:13, 1.86it/s] 1%|▏ | 2/138 [00:01<01:12, 1.87it/s] 2%|▏ | 3/138 [00:01<01:12, 1.87it/s] 3%|▎ | 4/138 [00:02<01:11, 1.87it/s] 4%|▎ | 5/138 [00:02<01:10, 1.88it/s] 4%|▍ | 6/138 [00:03<01:10, 1.87it/s] 5%|▌ | 7/138 [00:03<01:09, 1.88it/s] 6%|▌ | 8/138 [00:04<01:09, 1.87it/s] 7%|▋ | 9/138 [00:04<01:08, 1.88it/s] 7%|▋ | 10/138 [00:05<01:08, 1.88it/s] 8%|▊ | 11/138 [00:05<01:07, 1.88it/s] 9%|▊ | 12/138 [00:06<01:07, 1.87it/s] 9%|▉ | 13/138 [00:06<01:06, 1.87it/s] 10%|█ | 14/138 [00:07<01:06, 1.87it/s] 11%|█ | 15/138 [00:08<01:05, 1.87it/s] 12%|█▏ | 16/138 [00:08<01:05, 1.87it/s] 12%|█▏ | 17/138 [00:09<01:04, 1.87it/s] 13%|█▎ | 18/138 [00:09<01:04, 1.87it/s] 14%|█▍ | 19/138 [00:10<01:03, 1.87it/s] 14%|█▍ | 20/138 [00:10<01:03, 1.87it/s] 15%|█▌ | 21/138 [00:11<01:02, 1.87it/s] 16%|█▌ | 22/138 [00:11<01:02, 1.87it/s] 17%|█▋ | 23/138 [00:12<01:01, 1.87it/s] 17%|█▋ | 24/138 [00:12<01:01, 1.87it/s] 18%|█▊ | 25/138 [00:13<01:00, 1.87it/s] 19%|█▉ | 26/138 [00:13<00:59, 1.87it/s] 20%|█▉ | 27/138 [00:14<00:59, 1.87it/s] 20%|██ | 28/138 [00:14<00:58, 1.87it/s] 21%|██ | 29/138 [00:15<00:58, 1.87it/s] 22%|██▏ | 30/138 [00:16<00:57, 1.87it/s] 22%|██▏ | 31/138 [00:16<00:57, 1.87it/s] 23%|██▎ | 32/138 [00:17<00:56, 1.87it/s] 24%|██▍ | 33/138 [00:17<00:56, 1.87it/s] 25%|██▍ | 34/138 [00:18<00:55, 1.87it/s] 25%|██▌ | 35/138 [00:18<00:55, 1.86it/s] 26%|██▌ | 36/138 [00:19<00:54, 1.87it/s] 27%|██▋ | 37/138 [00:19<00:54, 1.87it/s] 28%|██▊ | 38/138 [00:20<00:53, 1.87it/s] 28%|██▊ | 39/138 [00:20<00:53, 1.87it/s] 29%|██▉ | 40/138 [00:21<00:52, 1.86it/s] 30%|██▉ | 41/138 [00:21<00:52, 1.86it/s] 30%|███ | 42/138 [00:22<00:51, 1.86it/s] 31%|███ | 43/138 [00:23<00:50, 1.87it/s] 32%|███▏ | 44/138 [00:23<00:50, 1.87it/s] 33%|███▎ | 45/138 [00:24<00:49, 1.87it/s] 33%|███▎ | 46/138 [00:24<00:49, 1.86it/s] 34%|███▍ | 47/138 [00:25<00:48, 1.86it/s] 35%|███▍ | 48/138 [00:25<00:48, 1.86it/s] 36%|███▌ | 49/138 [00:26<00:47, 1.86it/s] 36%|███▌ | 50/138 [00:26<00:47, 1.86it/s] 37%|███▋ | 51/138 [00:27<00:46, 1.86it/s] 38%|███▊ | 52/138 [00:27<00:46, 1.86it/s] 38%|███▊ | 53/138 [00:28<00:45, 1.86it/s] 39%|███▉ | 54/138 [00:28<00:45, 1.86it/s] 40%|███▉ | 55/138 [00:29<00:44, 1.86it/s] 41%|████ | 56/138 [00:29<00:44, 1.86it/s] 41%|████▏ | 57/138 [00:30<00:43, 1.86it/s] 42%|████▏ | 58/138 [00:31<00:42, 1.86it/s] 43%|████▎ | 59/138 [00:31<00:42, 1.86it/s] 43%|████▎ | 60/138 [00:32<00:41, 1.86it/s] 44%|████▍ | 61/138 [00:32<00:41, 1.86it/s] 45%|████▍ | 62/138 [00:33<00:40, 1.86it/s] 46%|████▌ | 63/138 [00:33<00:40, 1.86it/s] 46%|████▋ | 64/138 [00:34<00:39, 1.86it/s] 47%|████▋ | 65/138 [00:34<00:39, 1.86it/s] 48%|████▊ | 66/138 [00:35<00:38, 1.86it/s] 49%|████▊ | 67/138 [00:35<00:38, 1.86it/s] 49%|████▉ | 68/138 [00:36<00:37, 1.86it/s] 50%|█████ | 69/138 [00:36<00:37, 1.86it/s] 51%|█████ | 70/138 [00:37<00:36, 1.86it/s] 51%|█████▏ | 71/138 [00:38<00:35, 1.86it/s] 52%|█████▏ | 72/138 [00:38<00:35, 1.86it/s] 53%|█████▎ | 73/138 [00:39<00:34, 1.86it/s] 54%|█████▎ | 74/138 [00:39<00:34, 1.86it/s] 54%|█████▍ | 75/138 [00:40<00:34, 1.85it/s] 55%|█████▌ | 76/138 [00:40<00:33, 1.86it/s] 56%|█████▌ | 77/138 [00:41<00:32, 1.86it/s] 57%|█████▋ | 78/138 [00:41<00:32, 1.86it/s] 57%|█████▋ | 79/138 [00:42<00:31, 1.86it/s] 58%|█████▊ | 80/138 [00:42<00:31, 1.86it/s] 59%|█████▊ | 81/138 [00:43<00:30, 1.86it/s] 59%|█████▉ | 82/138 [00:43<00:30, 1.86it/s] 60%|██████ | 83/138 [00:44<00:29, 1.86it/s] 61%|██████ | 84/138 [00:45<00:29, 1.86it/s] 62%|██████▏ | 85/138 [00:45<00:28, 1.86it/s] 62%|██████▏ | 86/138 [00:46<00:27, 1.86it/s] 63%|██████▎ | 87/138 [00:46<00:27, 1.86it/s] 64%|██████▍ | 88/138 [00:47<00:26, 1.86it/s] 64%|██████▍ | 89/138 [00:47<00:26, 1.86it/s] 65%|██████▌ | 90/138 [00:48<00:25, 1.86it/s] 66%|██████▌ | 91/138 [00:48<00:25, 1.86it/s] 67%|██████▋ | 92/138 [00:49<00:24, 1.86it/s] 67%|██████▋ | 93/138 [00:49<00:24, 1.86it/s] 68%|██████▊ | 94/138 [00:50<00:23, 1.86it/s] 69%|██████▉ | 95/138 [00:50<00:23, 1.86it/s] 70%|██████▉ | 96/138 [00:51<00:22, 1.86it/s] 70%|███████ | 97/138 [00:52<00:22, 1.86it/s] 71%|███████ | 98/138 [00:52<00:21, 1.86it/s] 72%|███████▏ | 99/138 [00:53<00:20, 1.86it/s] 72%|███████▏ | 100/138 [00:53<00:20, 1.86it/s] 73%|███████▎ | 101/138 [00:54<00:19, 1.86it/s] 74%|███████▍ | 102/138 [00:54<00:19, 1.86it/s] 75%|███████▍ | 103/138 [00:55<00:18, 1.86it/s] 75%|███████▌ | 104/138 [00:55<00:18, 1.86it/s] 76%|███████▌ | 105/138 [00:56<00:17, 1.86it/s] 77%|███████▋ | 106/138 [00:56<00:17, 1.86it/s] 78%|███████▊ | 107/138 [00:57<00:16, 1.86it/s] 78%|███████▊ | 108/138 [00:57<00:16, 1.86it/s] 79%|███████▉ | 109/138 [00:58<00:15, 1.86it/s] 80%|███████▉ | 110/138 [00:59<00:15, 1.86it/s] 80%|████████ | 111/138 [00:59<00:14, 1.86it/s] 81%|████████ | 112/138 [01:00<00:14, 1.86it/s] 82%|████████▏ | 113/138 [01:00<00:13, 1.86it/s] 83%|████████▎ | 114/138 [01:01<00:12, 1.86it/s] 83%|████████▎ | 115/138 [01:01<00:12, 1.86it/s] 84%|████████▍ | 116/138 [01:02<00:11, 1.86it/s] 85%|████████▍ | 117/138 [01:02<00:11, 1.86it/s] 86%|████████▌ | 118/138 [01:03<00:10, 1.86it/s] 86%|████████▌ | 119/138 [01:03<00:10, 1.86it/s] 87%|████████▋ | 120/138 [01:04<00:09, 1.86it/s] 88%|████████▊ | 121/138 [01:04<00:09, 1.86it/s] 88%|████████▊ | 122/138 [01:05<00:08, 1.86it/s] 89%|████████▉ | 123/138 [01:06<00:08, 1.86it/s] 90%|████████▉ | 124/138 [01:06<00:07, 1.86it/s] 91%|█████████ | 125/138 [01:07<00:06, 1.86it/s] 91%|█████████▏| 126/138 [01:07<00:06, 1.86it/s] 92%|█████████▏| 127/138 [01:08<00:05, 1.86it/s] 93%|█████████▎| 128/138 [01:08<00:05, 1.86it/s] 93%|█████████▎| 129/138 [01:09<00:04, 1.86it/s] 94%|█████████▍| 130/138 [01:09<00:04, 1.86it/s] 95%|█████████▍| 131/138 [01:10<00:03, 1.86it/s] 96%|█████████▌| 132/138 [01:10<00:03, 1.86it/s] 96%|█████████▋| 133/138 [01:11<00:02, 1.86it/s] 97%|█████████▋| 134/138 [01:11<00:02, 1.85it/s] 98%|█████████▊| 135/138 [01:12<00:01, 1.85it/s] 99%|█████████▊| 136/138 [01:13<00:01, 1.85it/s] 99%|█████████▉| 137/138 [01:13<00:00, 1.85it/s] 100%|██████████| 138/138 [01:14<00:00, 1.85it/s] 100%|██████████| 138/138 [01:14<00:00, 1.86it/s] 0%| | 0/2 [00:00<?, ?it/s] 50%|█████ | 1/2 [00:00<00:00, 2.22it/s] 100%|██████████| 2/2 [00:00<00:00, 2.22it/s] 100%|██████████| 2/2 [00:00<00:00, 2.22it/s]
Want to make some of these yourself?
Run this model