prompthunt
/
sdxl
- Public
- 309 runs
Run prompthunt/sdxl with an API
Use one of our client libraries to get started quickly. Clicking on a library will take you to the Playground tab where you can tweak different inputs, see the results, and copy the corresponding code to use in your own project.
Input schema
The fields you can use to run this model with an API. If you don't give a value for a field its default value will be used.
Field | Type | Default value | Description |
---|---|---|---|
prompt |
string
|
Photo of TOK
|
Input prompt
|
negative_prompt |
string
|
plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry
|
Input Negative Prompt
|
num_inference_steps |
integer
|
25
Min: 1 Max: 500 |
Number of denoising steps
|
guidance_scale |
number
|
3
Min: 1 Max: 50 |
Scale for classifier-free guidance
|
inpaint_prompt |
string
|
A photo of TOK
|
Input inpaint prompt
|
inpaint_negative_prompt |
string
|
plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry
|
Input inpaint negative prompt
|
inpaint_num_inference_steps |
integer
|
25
Min: 1 Max: 500 |
Number of denoising steps for inpainting
|
second_inpaint_num_inference_steps |
integer
|
25
Min: 1 Max: 500 |
Number of denoising steps for inpainting
|
inpaint_guidance_scale |
number
|
3
Min: 1 Max: 50 |
Scale for classifier-free guidance for inpainting
|
second_inpaint_guidance_scale |
number
|
3
Min: 1 Max: 50 |
Scale for classifier-free guidance for inpainting
|
inpaint_strength |
number
|
0.35
Max: 1 |
Prompt strength when using inpaint. 1.0 corresponds to full destruction of information in image
|
second_inpaint_strength |
number
|
0.35
Max: 1 |
Prompt strength when using inpaint. 1.0 corresponds to full destruction of information in image
|
width |
integer
|
768
|
Width of output image
|
height |
integer
|
1024
|
Height of output image
|
num_outputs |
integer
|
1
Min: 1 Max: 4 |
Number of images to output.
|
scheduler |
string
(enum)
|
K_EULER
Options: DDIM, DPMSolverMultistep, HeunDiscrete, KarrasDPM, K_EULER_ANCESTRAL, K_EULER, PNDM |
scheduler
|
seed |
integer
|
Random seed. Leave blank to randomize the seed
|
|
lora_scale |
number
|
0.7
Max: 1 |
LoRA additive scale. Only applicable on trained models.
|
pose_image |
string
|
pose_image
|
|
controlnet_conditioning_scale |
number
|
1
Max: 2 |
controlnet_conditioning_scale
|
mask_blur_amount |
number
|
8
|
Amount to blur the inpaint mask by
|
crop_mask_padding |
number
|
0.5
Max: 5 |
crop_mask_padding
|
weights |
string
|
Replicate LoRA weights to use. Leave blank to use the default weights.
|
{
"type": "object",
"title": "Input",
"required": [
"weights"
],
"properties": {
"seed": {
"type": "integer",
"title": "Seed",
"x-order": 16,
"description": "Random seed. Leave blank to randomize the seed"
},
"width": {
"type": "integer",
"title": "Width",
"default": 768,
"x-order": 12,
"description": "Width of output image"
},
"height": {
"type": "integer",
"title": "Height",
"default": 1024,
"x-order": 13,
"description": "Height of output image"
},
"prompt": {
"type": "string",
"title": "Prompt",
"default": "Photo of TOK",
"x-order": 0,
"description": "Input prompt"
},
"weights": {
"type": "string",
"title": "Weights",
"x-order": 22,
"description": "Replicate LoRA weights to use. Leave blank to use the default weights."
},
"scheduler": {
"enum": [
"DDIM",
"DPMSolverMultistep",
"HeunDiscrete",
"KarrasDPM",
"K_EULER_ANCESTRAL",
"K_EULER",
"PNDM"
],
"type": "string",
"title": "scheduler",
"description": "scheduler",
"default": "K_EULER",
"x-order": 15
},
"lora_scale": {
"type": "number",
"title": "Lora Scale",
"default": 0.7,
"maximum": 1,
"minimum": 0,
"x-order": 17,
"description": "LoRA additive scale. Only applicable on trained models."
},
"pose_image": {
"type": "string",
"title": "Pose Image",
"format": "uri",
"x-order": 18,
"description": "pose_image"
},
"num_outputs": {
"type": "integer",
"title": "Num Outputs",
"default": 1,
"maximum": 4,
"minimum": 1,
"x-order": 14,
"description": "Number of images to output."
},
"guidance_scale": {
"type": "number",
"title": "Guidance Scale",
"default": 3,
"maximum": 50,
"minimum": 1,
"x-order": 3,
"description": "Scale for classifier-free guidance"
},
"inpaint_prompt": {
"type": "string",
"title": "Inpaint Prompt",
"default": "A photo of TOK",
"x-order": 4,
"description": "Input inpaint prompt"
},
"negative_prompt": {
"type": "string",
"title": "Negative Prompt",
"default": "plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",
"x-order": 1,
"description": "Input Negative Prompt"
},
"inpaint_strength": {
"type": "number",
"title": "Inpaint Strength",
"default": 0.35,
"maximum": 1,
"minimum": 0,
"x-order": 10,
"description": "Prompt strength when using inpaint. 1.0 corresponds to full destruction of information in image"
},
"mask_blur_amount": {
"type": "number",
"title": "Mask Blur Amount",
"default": 8,
"x-order": 20,
"description": "Amount to blur the inpaint mask by"
},
"crop_mask_padding": {
"type": "number",
"title": "Crop Mask Padding",
"default": 0.5,
"maximum": 5,
"minimum": 0,
"x-order": 21,
"description": "crop_mask_padding"
},
"num_inference_steps": {
"type": "integer",
"title": "Num Inference Steps",
"default": 25,
"maximum": 500,
"minimum": 1,
"x-order": 2,
"description": "Number of denoising steps"
},
"inpaint_guidance_scale": {
"type": "number",
"title": "Inpaint Guidance Scale",
"default": 3,
"maximum": 50,
"minimum": 1,
"x-order": 8,
"description": "Scale for classifier-free guidance for inpainting"
},
"inpaint_negative_prompt": {
"type": "string",
"title": "Inpaint Negative Prompt",
"default": "plastic, blurry, grainy, [deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",
"x-order": 5,
"description": "Input inpaint negative prompt"
},
"second_inpaint_strength": {
"type": "number",
"title": "Second Inpaint Strength",
"default": 0.35,
"maximum": 1,
"minimum": 0,
"x-order": 11,
"description": "Prompt strength when using inpaint. 1.0 corresponds to full destruction of information in image"
},
"inpaint_num_inference_steps": {
"type": "integer",
"title": "Inpaint Num Inference Steps",
"default": 25,
"maximum": 500,
"minimum": 1,
"x-order": 6,
"description": "Number of denoising steps for inpainting"
},
"controlnet_conditioning_scale": {
"type": "number",
"title": "Controlnet Conditioning Scale",
"default": 1,
"maximum": 2,
"minimum": 0,
"x-order": 19,
"description": "controlnet_conditioning_scale"
},
"second_inpaint_guidance_scale": {
"type": "number",
"title": "Second Inpaint Guidance Scale",
"default": 3,
"maximum": 50,
"minimum": 1,
"x-order": 9,
"description": "Scale for classifier-free guidance for inpainting"
},
"second_inpaint_num_inference_steps": {
"type": "integer",
"title": "Second Inpaint Num Inference Steps",
"default": 25,
"maximum": 500,
"minimum": 1,
"x-order": 7,
"description": "Number of denoising steps for inpainting"
}
}
}
Output schema
The shape of the response you’ll get when you run this model with an API.
{
"type": "array",
"items": {
"type": "string",
"format": "uri"
},
"title": "Output"
}