Readme
This model doesn't have a readme.
Run this model in Node.js with one line of code:
npm install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import Replicate from "replicate";
import fs from "node:fs";
const replicate = new Replicate({
auth: process.env.REPLICATE_API_TOKEN,
});
Run roelfrenkema/flux1_lora_watercolors using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run(
"roelfrenkema/flux1_lora_watercolors:5b5cf29c088332cb676d46462c4a2ba7c18686a6365f5a1e0f1df0ad3e9a53d0",
{
input: {
model: "dev",
prompt: "A seaside picture with people bathing and dancing. WC1",
go_fast: false,
lora_scale: 1.2,
megapixels: "1",
num_outputs: 1,
aspect_ratio: "1:1",
output_format: "webp",
guidance_scale: 3.5,
output_quality: 80,
prompt_strength: 0.8,
extra_lora_scale: 0.8,
num_inference_steps: 28
}
}
);
// To access the file URL:
console.log(output[0].url()); //=> "http://example.com"
// To write the file to disk:
fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
pip install replicate
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
import replicate
Run roelfrenkema/flux1_lora_watercolors using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run(
"roelfrenkema/flux1_lora_watercolors:5b5cf29c088332cb676d46462c4a2ba7c18686a6365f5a1e0f1df0ad3e9a53d0",
input={
"model": "dev",
"prompt": "A seaside picture with people bathing and dancing. WC1",
"go_fast": False,
"lora_scale": 1.2,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
}
)
print(output)
To learn more, take a look at the guide on getting started with Python.
REPLICATE_API_TOKEN
environment variable:export REPLICATE_API_TOKEN=<paste-your-token-here>
Find your API token in your account settings.
Run roelfrenkema/flux1_lora_watercolors using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \
-H "Authorization: Bearer $REPLICATE_API_TOKEN" \
-H "Content-Type: application/json" \
-H "Prefer: wait" \
-d $'{
"version": "roelfrenkema/flux1_lora_watercolors:5b5cf29c088332cb676d46462c4a2ba7c18686a6365f5a1e0f1df0ad3e9a53d0",
"input": {
"model": "dev",
"prompt": "A seaside picture with people bathing and dancing. WC1",
"go_fast": false,
"lora_scale": 1.2,
"megapixels": "1",
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"prompt_strength": 0.8,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
}
}' \
https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
brew install cog
If you don’t have Homebrew, there are other installation options available.
Run this to download the model and run it in your local environment:
cog predict r8.im/roelfrenkema/flux1_lora_watercolors@sha256:5b5cf29c088332cb676d46462c4a2ba7c18686a6365f5a1e0f1df0ad3e9a53d0 \
-i 'model="dev"' \
-i 'prompt="A seaside picture with people bathing and dancing. WC1"' \
-i 'go_fast=false' \
-i 'lora_scale=1.2' \
-i 'megapixels="1"' \
-i 'num_outputs=1' \
-i 'aspect_ratio="1:1"' \
-i 'output_format="webp"' \
-i 'guidance_scale=3.5' \
-i 'output_quality=80' \
-i 'prompt_strength=0.8' \
-i 'extra_lora_scale=0.8' \
-i 'num_inference_steps=28'
To learn more, take a look at the Cog documentation.
Run this to download the model and run it in your local environment:
docker run -d -p 5000:5000 --gpus=all r8.im/roelfrenkema/flux1_lora_watercolors@sha256:5b5cf29c088332cb676d46462c4a2ba7c18686a6365f5a1e0f1df0ad3e9a53d0
curl -s -X POST \ -H "Content-Type: application/json" \ -d $'{ "input": { "model": "dev", "prompt": "A seaside picture with people bathing and dancing. WC1", "go_fast": false, "lora_scale": 1.2, "megapixels": "1", "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "prompt_strength": 0.8, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ http://localhost:5000/predictions
To learn more, take a look at the Cog documentation.
Add a payment method to run this model.
By signing in, you agree to our
terms of service and privacy policy
{
"completed_at": "2024-08-24T14:17:41.774890Z",
"created_at": "2024-08-24T14:17:21.600000Z",
"data_removed": false,
"error": null,
"id": "smxvhk5kr1rm40chgjzref244r",
"input": {
"model": "dev",
"prompt": "A seaside picture with people bathing and dancing. WC1",
"lora_scale": 1.2,
"num_outputs": 1,
"aspect_ratio": "1:1",
"output_format": "webp",
"guidance_scale": 3.5,
"output_quality": 80,
"extra_lora_scale": 0.8,
"num_inference_steps": 28
},
"logs": "Using seed: 2431\nPrompt: A seaside picture with people bathing and dancing. WC1\ntxt2img mode\nUsing dev model\nLoaded LoRAs in 11.77s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.54it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.97it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.77it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.63it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.60it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.59it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.57it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.56it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.56it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.56it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.56it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.55it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.56it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.56it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.54it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.57it/s]",
"metrics": {
"predict_time": 20.166805554,
"total_time": 20.17489
},
"output": [
"https://replicate.delivery/yhqm/Hz0PvRrSq7JzOtXIZY5nbZfXybDIl6QTMXOZ8Dz5zNlC78qJA/out-0.webp"
],
"started_at": "2024-08-24T14:17:21.608084Z",
"status": "succeeded",
"urls": {
"get": "https://api.replicate.com/v1/predictions/smxvhk5kr1rm40chgjzref244r",
"cancel": "https://api.replicate.com/v1/predictions/smxvhk5kr1rm40chgjzref244r/cancel"
},
"version": "01a79b967262182db2cd3d4f599645f8ec375d14442b02a07a8402324feb765d"
}
Using seed: 2431
Prompt: A seaside picture with people bathing and dancing. WC1
txt2img mode
Using dev model
Loaded LoRAs in 11.77s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.54it/s]
7%|▋ | 2/28 [00:00<00:06, 3.97it/s]
11%|█ | 3/28 [00:00<00:06, 3.77it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.63it/s]
21%|██▏ | 6/28 [00:01<00:06, 3.60it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.59it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.57it/s]
36%|███▌ | 10/28 [00:02<00:05, 3.56it/s]
39%|███▉ | 11/28 [00:03<00:04, 3.56it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.56it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.56it/s]
50%|█████ | 14/28 [00:03<00:03, 3.55it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]
61%|██████ | 17/28 [00:04<00:03, 3.56it/s]
64%|██████▍ | 18/28 [00:05<00:02, 3.56it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s]
79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.54it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.57it/s]
This output was created using a different version of the model, roelfrenkema/flux1_lora_watercolors:01a79b96.
This model runs on Nvidia H100 GPU hardware. We don't yet have enough runs of this model to provide performance information.
This model doesn't have a readme.
This model is warm. You'll get a fast response if the model is warm and already running, and a slower response if the model is cold and starting up.
This model runs on H100 hardware which costs $0.001525 per second. View more.
Choose a file from your machine
Hint: you can also drag files onto the input
Choose a file from your machine
Hint: you can also drag files onto the input
Using seed: 2431
Prompt: A seaside picture with people bathing and dancing. WC1
txt2img mode
Using dev model
Loaded LoRAs in 11.77s
0%| | 0/28 [00:00<?, ?it/s]
4%|▎ | 1/28 [00:00<00:07, 3.54it/s]
7%|▋ | 2/28 [00:00<00:06, 3.97it/s]
11%|█ | 3/28 [00:00<00:06, 3.77it/s]
14%|█▍ | 4/28 [00:01<00:06, 3.67it/s]
18%|█▊ | 5/28 [00:01<00:06, 3.63it/s]
21%|██▏ | 6/28 [00:01<00:06, 3.60it/s]
25%|██▌ | 7/28 [00:01<00:05, 3.59it/s]
29%|██▊ | 8/28 [00:02<00:05, 3.57it/s]
32%|███▏ | 9/28 [00:02<00:05, 3.57it/s]
36%|███▌ | 10/28 [00:02<00:05, 3.56it/s]
39%|███▉ | 11/28 [00:03<00:04, 3.56it/s]
43%|████▎ | 12/28 [00:03<00:04, 3.56it/s]
46%|████▋ | 13/28 [00:03<00:04, 3.56it/s]
50%|█████ | 14/28 [00:03<00:03, 3.55it/s]
54%|█████▎ | 15/28 [00:04<00:03, 3.56it/s]
57%|█████▋ | 16/28 [00:04<00:03, 3.55it/s]
61%|██████ | 17/28 [00:04<00:03, 3.56it/s]
64%|██████▍ | 18/28 [00:05<00:02, 3.56it/s]
68%|██████▊ | 19/28 [00:05<00:02, 3.56it/s]
71%|███████▏ | 20/28 [00:05<00:02, 3.56it/s]
75%|███████▌ | 21/28 [00:05<00:01, 3.56it/s]
79%|███████▊ | 22/28 [00:06<00:01, 3.56it/s]
82%|████████▏ | 23/28 [00:06<00:01, 3.54it/s]
86%|████████▌ | 24/28 [00:06<00:01, 3.55it/s]
89%|████████▉ | 25/28 [00:06<00:00, 3.54it/s]
93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]
96%|█████████▋| 27/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
100%|██████████| 28/28 [00:07<00:00, 3.57it/s]