roelfrenkema
/
mother.of.dragons
- Public
- 30 runs
-
H100
Prediction
roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946ID1h26a58mrdrm20chh95btvh2fcStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A dragon like woman running to the streets of a busy city
- lora_scale
- 1
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A dragon like woman running to the streets of a busy city", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run roelfrenkema/mother.of.dragons using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946", { input: { model: "dev", prompt: "A dragon like woman running to the streets of a busy city", lora_scale: 1, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run roelfrenkema/mother.of.dragons using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946", input={ "model": "dev", "prompt": "A dragon like woman running to the streets of a busy city", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run roelfrenkema/mother.of.dragons using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946", "input": { "model": "dev", "prompt": "A dragon like woman running to the streets of a busy city", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-25T16:07:08.058863Z", "created_at": "2024-08-25T16:06:36.483000Z", "data_removed": false, "error": null, "id": "1h26a58mrdrm20chh95btvh2fc", "input": { "model": "dev", "prompt": "A dragon like woman running to the streets of a busy city", "lora_scale": 1, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 53857\nPrompt: A dragon like woman running to the streets of a busy city\ntxt2img mode\nUsing dev model\nfree=9741733064704\nDownloading weights\n2024-08-25T16:06:49Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpo1fxhis0/weights url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar\n2024-08-25T16:06:52Z | INFO | [ Complete ] dest=/tmp/tmpo1fxhis0/weights size=\"172 MB\" total_elapsed=3.459s url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar\nDownloaded weights in 3.49s\nLoaded LoRAs in 10.72s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.67it/s]\n 7%|▋ | 2/28 [00:00<00:06, 4.24it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.97it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.84it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s]\n 21%|██▏ | 6/28 [00:01<00:05, 3.75it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.73it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.71it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.70it/s]\n 36%|███▌ | 10/28 [00:02<00:04, 3.69it/s]\n 39%|███▉ | 11/28 [00:02<00:04, 3.69it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.68it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.68it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.68it/s]\n 61%|██████ | 17/28 [00:04<00:02, 3.68it/s]\n 64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.68it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s]\n 79%|███████▊ | 22/28 [00:05<00:01, 3.68it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.68it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s]\n 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.68it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.67it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.71it/s]", "metrics": { "predict_time": 18.80959508, "total_time": 31.575863 }, "output": [ "https://replicate.delivery/yhqm/fvsma28TFAz2KKTyKzPregCk2bbe8PjHzfeSbFTIMMIdVEyaC/out-0.webp" ], "started_at": "2024-08-25T16:06:49.249268Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/1h26a58mrdrm20chh95btvh2fc", "cancel": "https://api.replicate.com/v1/predictions/1h26a58mrdrm20chh95btvh2fc/cancel" }, "version": "9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946" }
Generated inUsing seed: 53857 Prompt: A dragon like woman running to the streets of a busy city txt2img mode Using dev model free=9741733064704 Downloading weights 2024-08-25T16:06:49Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpo1fxhis0/weights url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar 2024-08-25T16:06:52Z | INFO | [ Complete ] dest=/tmp/tmpo1fxhis0/weights size="172 MB" total_elapsed=3.459s url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar Downloaded weights in 3.49s Loaded LoRAs in 10.72s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.67it/s] 7%|▋ | 2/28 [00:00<00:06, 4.24it/s] 11%|█ | 3/28 [00:00<00:06, 3.97it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.84it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.78it/s] 21%|██▏ | 6/28 [00:01<00:05, 3.75it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.73it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.71it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.70it/s] 36%|███▌ | 10/28 [00:02<00:04, 3.69it/s] 39%|███▉ | 11/28 [00:02<00:04, 3.69it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.68it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.68it/s] 50%|█████ | 14/28 [00:03<00:03, 3.68it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.68it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.68it/s] 61%|██████ | 17/28 [00:04<00:02, 3.68it/s] 64%|██████▍ | 18/28 [00:04<00:02, 3.68it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.68it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.68it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.67it/s] 79%|███████▊ | 22/28 [00:05<00:01, 3.68it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.68it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.68it/s] 89%|████████▉ | 25/28 [00:06<00:00, 3.67it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.68it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.68it/s] 100%|██████████| 28/28 [00:07<00:00, 3.67it/s] 100%|██████████| 28/28 [00:07<00:00, 3.71it/s]
Prediction
roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946IDh43qbes3s9rm00chh95r450bewStatusSucceededSourceWebHardwareH100Total durationCreatedInput
- model
- dev
- prompt
- A dragon like woman running trough the streets of a busy city
- lora_scale
- 0.7
- num_outputs
- 1
- aspect_ratio
- 1:1
- output_format
- webp
- guidance_scale
- 3.5
- output_quality
- 80
- extra_lora_scale
- 0.8
- num_inference_steps
- 28
{ "model": "dev", "prompt": "A dragon like woman running trough the streets of a busy city", "lora_scale": 0.7, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }
Install Replicate’s Node.js client library:npm install replicate
Import and set up the client:import Replicate from "replicate"; const replicate = new Replicate({ auth: process.env.REPLICATE_API_TOKEN, });
Run roelfrenkema/mother.of.dragons using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
const output = await replicate.run( "roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946", { input: { model: "dev", prompt: "A dragon like woman running trough the streets of a busy city", lora_scale: 0.7, num_outputs: 1, aspect_ratio: "1:1", output_format: "webp", guidance_scale: 3.5, output_quality: 80, extra_lora_scale: 0.8, num_inference_steps: 28 } } ); // To access the file URL: console.log(output[0].url()); //=> "http://example.com" // To write the file to disk: fs.writeFile("my-image.png", output[0]);
To learn more, take a look at the guide on getting started with Node.js.
Install Replicate’s Python client library:pip install replicate
Import the client:import replicate
Run roelfrenkema/mother.of.dragons using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
output = replicate.run( "roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946", input={ "model": "dev", "prompt": "A dragon like woman running trough the streets of a busy city", "lora_scale": 0.7, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } ) print(output)
To learn more, take a look at the guide on getting started with Python.
Run roelfrenkema/mother.of.dragons using Replicate’s API. Check out the model's schema for an overview of inputs and outputs.
curl -s -X POST \ -H "Authorization: Bearer $REPLICATE_API_TOKEN" \ -H "Content-Type: application/json" \ -H "Prefer: wait" \ -d $'{ "version": "roelfrenkema/mother.of.dragons:9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946", "input": { "model": "dev", "prompt": "A dragon like woman running trough the streets of a busy city", "lora_scale": 0.7, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 } }' \ https://api.replicate.com/v1/predictions
To learn more, take a look at Replicate’s HTTP API reference docs.
Output
{ "completed_at": "2024-08-25T16:08:22.939778Z", "created_at": "2024-08-25T16:07:45.866000Z", "data_removed": false, "error": null, "id": "h43qbes3s9rm00chh95r450bew", "input": { "model": "dev", "prompt": "A dragon like woman running trough the streets of a busy city", "lora_scale": 0.7, "num_outputs": 1, "aspect_ratio": "1:1", "output_format": "webp", "guidance_scale": 3.5, "output_quality": 80, "extra_lora_scale": 0.8, "num_inference_steps": 28 }, "logs": "Using seed: 19941\nPrompt: A dragon like woman running trough the streets of a busy city\ntxt2img mode\nUsing dev model\nfree=9280215961600\nDownloading weights\n2024-08-25T16:08:01Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpafs2fsvz/weights url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar\n2024-08-25T16:08:04Z | INFO | [ Complete ] dest=/tmp/tmpafs2fsvz/weights size=\"172 MB\" total_elapsed=2.639s url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar\nDownloaded weights in 2.67s\nLoaded LoRAs in 12.59s\n 0%| | 0/28 [00:00<?, ?it/s]\n 4%|▎ | 1/28 [00:00<00:07, 3.53it/s]\n 7%|▋ | 2/28 [00:00<00:06, 3.93it/s]\n 11%|█ | 3/28 [00:00<00:06, 3.72it/s]\n 14%|█▍ | 4/28 [00:01<00:06, 3.64it/s]\n 18%|█▊ | 5/28 [00:01<00:06, 3.60it/s]\n 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s]\n 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s]\n 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s]\n 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s]\n 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s]\n 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s]\n 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s]\n 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s]\n 50%|█████ | 14/28 [00:03<00:03, 3.54it/s]\n 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s]\n 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s]\n 61%|██████ | 17/28 [00:04<00:03, 3.53it/s]\n 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s]\n 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s]\n 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s]\n 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s]\n 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s]\n 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s]\n 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s]\n 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s]\n 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s]\n 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.53it/s]\n100%|██████████| 28/28 [00:07<00:00, 3.55it/s]", "metrics": { "predict_time": 21.011169092, "total_time": 37.073778 }, "output": [ "https://replicate.delivery/yhqm/V3uxj6OXXvZMGlb9sk9QXNwtXeNefqnOEtlRi2MBqV9tHhsmA/out-0.webp" ], "started_at": "2024-08-25T16:08:01.928609Z", "status": "succeeded", "urls": { "get": "https://api.replicate.com/v1/predictions/h43qbes3s9rm00chh95r450bew", "cancel": "https://api.replicate.com/v1/predictions/h43qbes3s9rm00chh95r450bew/cancel" }, "version": "9e03b43ea54d86c8dbf7483b6b14abbb3d9081b2999156531938e48a83a1f946" }
Generated inUsing seed: 19941 Prompt: A dragon like woman running trough the streets of a busy city txt2img mode Using dev model free=9280215961600 Downloading weights 2024-08-25T16:08:01Z | INFO | [ Initiating ] chunk_size=150M dest=/tmp/tmpafs2fsvz/weights url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar 2024-08-25T16:08:04Z | INFO | [ Complete ] dest=/tmp/tmpafs2fsvz/weights size="172 MB" total_elapsed=2.639s url=https://replicate.delivery/yhqm/2XMbFfPZDxUyAaM6f5KTq7yvRu8JDy3NVHekJ0KZAe8Tz9YNB/trained_model.tar Downloaded weights in 2.67s Loaded LoRAs in 12.59s 0%| | 0/28 [00:00<?, ?it/s] 4%|▎ | 1/28 [00:00<00:07, 3.53it/s] 7%|▋ | 2/28 [00:00<00:06, 3.93it/s] 11%|█ | 3/28 [00:00<00:06, 3.72it/s] 14%|█▍ | 4/28 [00:01<00:06, 3.64it/s] 18%|█▊ | 5/28 [00:01<00:06, 3.60it/s] 21%|██▏ | 6/28 [00:01<00:06, 3.58it/s] 25%|██▌ | 7/28 [00:01<00:05, 3.56it/s] 29%|██▊ | 8/28 [00:02<00:05, 3.55it/s] 32%|███▏ | 9/28 [00:02<00:05, 3.55it/s] 36%|███▌ | 10/28 [00:02<00:05, 3.54it/s] 39%|███▉ | 11/28 [00:03<00:04, 3.54it/s] 43%|████▎ | 12/28 [00:03<00:04, 3.54it/s] 46%|████▋ | 13/28 [00:03<00:04, 3.54it/s] 50%|█████ | 14/28 [00:03<00:03, 3.54it/s] 54%|█████▎ | 15/28 [00:04<00:03, 3.53it/s] 57%|█████▋ | 16/28 [00:04<00:03, 3.53it/s] 61%|██████ | 17/28 [00:04<00:03, 3.53it/s] 64%|██████▍ | 18/28 [00:05<00:02, 3.53it/s] 68%|██████▊ | 19/28 [00:05<00:02, 3.53it/s] 71%|███████▏ | 20/28 [00:05<00:02, 3.53it/s] 75%|███████▌ | 21/28 [00:05<00:01, 3.53it/s] 79%|███████▊ | 22/28 [00:06<00:01, 3.53it/s] 82%|████████▏ | 23/28 [00:06<00:01, 3.53it/s] 86%|████████▌ | 24/28 [00:06<00:01, 3.53it/s] 89%|████████▉ | 25/28 [00:07<00:00, 3.53it/s] 93%|█████████▎| 26/28 [00:07<00:00, 3.54it/s] 96%|█████████▋| 27/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.53it/s] 100%|██████████| 28/28 [00:07<00:00, 3.55it/s]
Want to make some of these yourself?
Run this model